

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

SECOND YEAR FIRSTSEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (PHYSICAL THERAPY)

COURSE CODE:

BPT 211

COURSE TITLE:

PRINCIPLES OF PHYSICS

DATE: 13TH DECEMBER, 2018

TIME: 2.00 PM - 5.00 PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

BPT 211: PRINCIPLES OF PHYSICS

STREAM: BSC (PT) DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer Question ONE and TWO in SECTION A and from THREE questions in SECTION B.
- ii. Density of water = $1.0 \times 10^3 \text{kg/m}^3$, Density of blood = $1.06 \times 10^3 \text{kg/m}^3$, Acceleration due to gravity g= 9.8 m/s^2 , Universal gravitational constant G= $6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$, permittivity of free space $\epsilon_o = 8.85 \times 10^{-12} Fm^{-1}$, charge on an electron= $1.6 \times 10^{-19} \text{ C}$, K= $1/(4\pi\epsilon_o) = 9*10^{\circ}9$, Mass of an electron, Me= $9.11 \times 10^{-31} \text{Kg}$, $1 \text{eV} = 1.6 \times 10^{-19} \text{J}$, permeability of free space, $\mu_o = 4\pi \times 10^{-7} \text{Tm/A}$

SECTION A:

QUESTION ONE (12 Marks)

- a) Distinguish between vector and scalar quantities and give an example of each (2mks)
- b) If a = 2i + 3j + 4k and b = 5i + 6j + 7k find;
 - a. **a+b**
 - b. a vector \mathbf{c} such that \mathbf{a} - \mathbf{b} + \mathbf{c} = $\mathbf{0}$ (2mks)
- c) An electron in a cathode ray tube (CRT) accelerates from 2.00×10^4 m/s to 6.00×10^6 m/s over 1.50 cm.
 - (i) How long does the electron take to travel this 1.50 cm? (2mks)
 - (ii) What is its acceleration? (2mks)
- d) AM and FM radio waves are transverse waves that consist of electric and magnetic disturbances. They travel at the speed of light 3.0 x 10⁸ m/s. A radio station broadcast on AM frequency of 1230 kHz and on FM of 91.9 MHz. Find the distance between adjacent crests in each wave. (4mks)

QUESTION TWO (12 Marks)

- a) Distinguish between a basic physical quantity and a derived quantity (2mks)
- b) A cart is pulled along at angle of 30° along the floor to a distance of 20 m in 30 s with a force of 750 N. Find the Power in Watt and horsepower. (3mks)
- c) A stone is dropped from rest from the top of a tall building. Calculate the vertical displacement of the stone after 3.0s of free fall.(2mks)
- d) Sketch a Displacement-Time graph for a body moving with
 - (i) Constant velocity
 - (ii) Zero velocity (2mks
- e) An aluminum stick of length 1.5 m is cooled from 20° C to -180° C. Find the final length if its coefficient of linear expansion is 2.3×10⁻⁶/K? (3mks)

SECTION B:

QUESTION THREE (12 Marks)

(a) Differentiate between stress and strain

(2 mks)

- **(b)** A rod 4.0 m long and 12.0cm² in cross-sectional area is stretched 0.20 cm under a tension of 4.8 X 10³N. Calculate;
- (i) Stress and strain

(4mks)

(ii) Young's modulus

(2mks)

(c) Statethe equation of continuity

(2mks)

(d) A neurysm is an abnormal enlargement of a blood vessel such as the aorta. Suppose the cross-sectional area A_1 of the aorta increases to a value $A_2 = 1.7A_1$. The speed of blood through the normal portion of the aorta is $v_1 = 0.4$ m/s. Determine the speed of the blood in the enlarged (2mks)

QUESTION FOUR (12 Marks)

- a) Differentiate between the following terms
 - (i) Heat and temperature

(ii) Conduction and Convection.

(4 mks)

- b) Given that mercury in glass thermometer has a mercury thread of length 2cm and 10cm at ice and steam points respectively. Calculate the temperature at a length of 6cm in:
 - (i) degrees celcius
 - (ii) degrees Fahrenheit

(3 mks)

- c) Give the meaning of the following terms as used in thermodynamics:
 - (i) Thermodynamic system
 - (ii) Thermodynamic process

(2 mks)

d) Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes to form ice, also at 0 °C. (3 mks)

QUESTION FIVE (12 Marks)

(a) State Hooke's law

(1mk)

(b)A 0.12kg mass attached to a spring oscillates with amplitude A=0.075m and a maximum speed of 0.524m/s. Find;

(i) The spring constant

(2mks)

(ii) The period

(2mks)

(iii) The maximum acceleration

(2mks)

(c) Two masses of 0.5 Kg and 0.25 Kg are connected by a light inextensible string, which passes over a smooth pulley as shown.

If the system is released from rest with the string taut, determine:

(i) The acceleration of the system	(2mks)
(ii) The tension in the string	(2mks)
(iii) The distance travelled in 0.5 s.	(1mk)

QUESTION SIX (12 Marks)

- (a) Distinguish between longitudinal and transverse waves giving an example of each (4mks)
- (b) A harmonic wave propagating in the +x direction has amplitude A. Write the equation for the wave in terms of the wave number k and angular frequency ω . (1mk)
- (c) The displacement of molecules in a sound wave travelling is given by $y(x,t) = 7 \times 10^{-8} sin(5.3x 1800t)$ for x and y in metres and t in seconds.
 - i. Find the wavelength and the frequency of the wave. (2mks)
 - ii. Determine the maximum displacement of any molecule from its equilibrium position. (1mk)
- iii. Find the speed of the wave. (2mks)
- (d) State two applications of ultrasound

QUESTION SEVEN (12 Marks)

- (a) State the thin lens equation, defining each and every symbol used (2mk)
- (b) A ray of light strikes a flat, 2.00 cm thick block of glass (n = 1.50) at an angle of 30° with respect to the normal.
- (i) Find the angle of refraction at the top surface.

(3mks)

(2mks)

- (ii) Find the angle of incidence at the bottom surface and the refracted angle at this surface.

 (3mks)
- (c). Identify any four fundamental components of NMR apparatus (4mks)
