

ALUPE UNIVERSITE COLLEGE.... Bastion of Knowledge....

P. O.Box 845-50400 Busia(K)

principal@auc.ac.ke
Tel: +254 741 217 185
+254 736 044 469

off Busia-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL
ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

...3rd.... YEAR ...1ST..... SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE ECONOMICS

COURSE CODE: ECO 312

COURSE TITLE: MATHEMATICS FOR ECONOMIST

DATE:

11/12/2019

TIME: 8 am -12 pm

Main exam

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

INSTRUCTIONS TO CANDIDATES

- Answer Question ONE and any other TWO questions
- Question ONE carries 30 marks
- Time allowed: 3 hours

QUESTION ONE (30 MARKS)

- a) A firm faces the production function $Q = 20K^{0.4}L^{0.6}$. It can buy inputs K and L for for sh. 400 and sh. 200 per unit respectively. Using the langragian multiplier determine the combination of K and L that should be used to maximize output if its input budget is constrained at sh. 6000. (10 marks)
- b) Given the consumers demand function as

$$P = 50 - 5Q$$

Determine the consumer's surplus at p=15

(6 marks)

- c) Use the quadratic formula to solve $16x^2 + 3x 5 = 0$ (6 marks)
- d) Suppose the demand and Average cost functions for a firm is represented by

$$P = 20 - Q$$
$$AC = \frac{50}{O} - 2 + Q$$

Obtain the profit function

(8 marks)

QUESTION TWO (30 MARKS)

- a) Evaluate
 - i) $\lim_{x\to\infty} \frac{1}{2x+7}$ ii) $Log_3 27 + Log_y y^5$

(4 marks)

(4 marks)

b) A company extracts minerals from ores. The number of kilograms that can be extracted from each ton of ore X and Y is given as follows.

	Ore X	Ore Y	
Mineral A	36	6	
Mineral B	3	12	
Mineral C	20	10	

The cost per ton is 20 shillings and 40 shillings for ore X and Y respectively

The company must produce at least 108, 36 and 100 kilograms of A, B and C respectively.

- i) Using the above information form the linear programming problem (6 marks)
- ii) Solve the above LPP using the graphical method (6 marks)

QUESTION THREE (20 MARKS)

- a) Prove that the following demand function is unitary elastic $p = \frac{1}{\infty 0}$ (5 marks)
- b) For XYZ manufacturing company, the total fixed costs are sh. 1200 and the variable costs are sh. 2 per unit. The demand equation is given as

$$p = {}^{100}/_{\sqrt{q}}$$

- i) At what level of output is profit maximized (6 marks)
- ii) What is the price at profit maximization (4 marks)
- c) Analyze the continuity of $\frac{x^2-9}{x-3}$ $0 \le x \le 3$ at x = 3 (5 marks)

QUESTIONFOUR (20 MARKS)

a) Find the derivative of the function

$$f(x) = \left(\frac{x^2 - x - 3}{x^2 + 1}\right) \left(x^2 + x + 1\right)$$

(8 marks)

(6 marks)

- b) The population of a town of 5000 grows at a rate of 3% per year.
 - i) Determine the equation that gives the population at n years from now. (4 marks)
 - ii) What will be the population in three years? (2marks)
 - c) Evaluate by means of integration by substitution:

$$\int_{1}^{2} \frac{2-6x}{(2x-3x^{2})^{3}} dx$$

QUESTION FIVE (20 MARKS)

- a) i) Given a general quadratic equation ax²+bx+c=0 solve for x using the completion of squares method.
 (6 marks)
 - ii) Show how the solution in (i) above gives rise to the quadratic formula.

(6 marks)

b) Suppose you have the following demand function pq=100 Let c be the total cost and the marginal cost is 0.01 at q=200. Use chain rule to determine dc/dp at q=200 (8 marks)

.....END.....