

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2018/2019 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 103e

COURSE TITLE:

INTRODUCTION TO THERMODYNAMICS AND KINETICS

DATE: 24TH APRIL, 2019

TIME: 2.00 PM – 5.00 PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

1 "~

A constituent college of Moi University

CHE 103e: INTRODUCTION TO THERMODYNAMICS AND KINETICS

STREAM: BED (Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- *i.* Answer ALL questions.
- *ii.* Use the following physical constants where applicable:

Physical Constants

 $R = 0.08206 \text{ atm } L \text{ } K^{-1} \text{ } mol^{-1} \text{ } or \text{ } R = 8.314 \text{ } J \text{ } K^{-1} \text{ } mol^{-1}, 1^{\circ}C = 273 \text{ } K, \text{ } \text{CO}_{2(g)}, a = 3.592 \text{ } a$ $(L^2 - atm/mol^2) \text{ } and b = 0.04267 \text{ } (L/mol), N = 14$

Question One

a) Define the following terms:

	i.	Ideality	(1 Mark)	
	ii.	Thermodynamics	(1 Mark)	
	iii.	Closed and isothermal system	(1 Mark)	
	iv.	Extensive Variable	(1 Mark)	
	v.	Isochoric process	(1 Mark)	
	vi.	Kinetic theory of matter	(1 Mark)	
	vii.	Collision Theory	(1 Mark)	
b)	What is an ideal gas? (1 Mar		(1 Mark)	
c)	State	two basic properties of gases which differentiate gases from liquids		
	and solids		(2 Marks)	
d)	State	four main features of the ideal gas kinetic molecular theory.	(2 Marks)	
e)	Why o	Why do real gases deviate from ideal behaviour? Give reasons why (2 Marks)		
f)	Consi	der a sample of 1.000 mol of $CO_{2(g)}$ confined to a volume of 3.000 L		
	at 0°C. Calculate the pressure of the gas using:			
	(i)	The ideal-gas equation, and	(2 Marks)	
	(ii)	The van der Waals equation.	(2 Marks)	
g)	Expla	in what is happening in the graph below	(2 Marks)	

Question Two

T

e.

a)) Differentiate between an ideal and a real gas.				
b)) Fifty grams of N_2 occupies a volume of 750 mL at 298.15 K. Assuming				
	the gas behaves ideally, calculate the pressure of the gas in atm.	(3 Marks)			
c)) Using equations differentiate between expansion work and free expansion.				
d)) Prove that the relationship between heat capacity at constant pressure (C_p)				
	and heat capacity at constant volume (C_v) is given by C_p - $C_v = R$	(3 Marks)			
e)	Calculate the heat required to increase the temperature of gaseous O_2				
	from 0°C to 100°C.				
	(i) At constant P	(2 Marks)			
	(ii) At constant V	(2 Marks)			
	(iii) Account for the difference in heat absorbed in (i) and (ii).	(1 Mark)			
f)	Calculate the minimum work done at 50 °C on 5 moles of CO2 to form				
	a precipitate from a volume of 50 L to a volume of 1 L when CO_2 is				
	considered as a perfect gas.	(3 Marks)			
g)	Argon gas at 5 atm expands reverse adiabatically to twice $(5\times)$ its initial				
	volume. Calculate its final pressure given that $y = 5 / 3$.	(3 Marks)			
Qı	lestion Three				
a)	1 mole of methane at 200°C and 10 atm expands adiabatically and				
	reversibly until its temperature was 0°C. If methane is a perfect gas				
	with heat capacity at constant pressure of 15 J mol ⁻¹ K ⁻¹ , calculate:				
	(i) Work done on methane	(3 Marks)			

(ii) Final pressure of methane gas. (2 Marks)

b)	b) From the thermodynamic definition of enthalpy, H=U+PV, prove				
	that $\Delta H=q_p$		(3 Marks)		
c)) Using suitable equations and examples, differentiate between				
	(i) Unimolecular react	tions	(2 Marks)		
	(ii) Bimolecular reaction	ons	(2 Marks)		
d)	State the laws of thermoch	(2 Marks)			
e)	e) State Hess law.				
Qı	uestion Four				
a)	With relevant examples in	n chemical equations, differentiate between			
	homogeneous and heterog	geneous catalysis.	(2 Marks)		
b)) Define the following terms:				
-	(i) Limiting enthalpy	v of solution	(1 Mark)		
	(ii) Standard reaction	enthalpy	(1 Mark)		
c)	The reaction, 2NO $_{(g)} \leftrightarrow$	$N_{2(g)} + O_{2(g)}$, has a value of K= 2400 at			
	2000 K. If 0.61 g of NO	are put in a previously empty 3.00 L vessel,			
	calculate the equilibrium	concentrations of NO, N2, and O2.	(3 Marks)		
d)	Derive the integrated rate	e equations for first (1 st) order reactions.	(2 Marks)		
e)	Give two practical applications of catalysts in real life. (2 Marks)				
f)	Calculate the standard enthalpy change for the reaction: (4 Ma				
	$2NaHCO_{3(s)} \rightarrow Na_2CO_{3(s)} +$				
	The relevant enthalpy changes of formation are; $\Delta H_{f}^{\theta}[NaHCO_{3}(s)] = -950.8 \text{ kJmol}^{-1}$ $\Delta H_{f}^{\theta}[Na_{2}CO_{3}(s)] = -1130.7 \text{ kJmol}^{-1}$				
	$\Delta H_{f}^{\theta}[CO_{2}(g)] = -393.5 \text{ kJ}$	Imol ⁻¹			
$\Delta H_{f}^{\theta}[H_2O(l)] = -285.8 \text{ kJmol}^{-1}$					

4
