

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2017 /2018 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAREXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

PHY 122

COURSE CODE:

COURSE TITLE:

ELECTRICITY AND MAGNETISM I

DATE: 26th, APRIL, 2018 NOON

TIME: 9AM - 12.00 PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 6 PRINTED PAGES

PLEASE TURN OVER

PHY 122 PHY 122: ELECTRICITY AND MAGNETISM I

STREAM: Bed Sc.

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- *i.* Answer Question ONE and TWO in SECTION A and any other THREE questions in SECTION B.
- *ii.* Do not write on the question paper.

SECTION A (24 Marks)

Question One

a) (i) Write an expression of the magnetic force, experienced by a charge q moving with velocity v, in a magnetic field B. (1 Mark)

(ii) An electron in a television picture tube moves toward the front of the tube with a speed r of $8.0 \times 10^6 m/s$ along the x axis. Surrounding the neck of the tube are coils of wire that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying in the xy plane. Calculate the magnetic force (2Marks)

b) For a toroid having N closely spaced turns of wire, mean radius, r and circumference L and $n = \frac{N}{L}$, show that magnetic field in the region occupied by the torus, a distance r from the centre is, $B = \mu_0 \frac{N}{2r\pi} L$ (3 Marks)

c)Differentiate between relative permeability, μ_r and magnetic susceptibility, χ_m . Express in form of an equation the relationship between μ_r and χ_m . (3 Marks)

d) A metal rod is 2m long and 8mm in diameter. Compute its resistance, if the resistivity of the metal is $1.76 \times 10^{-8} \Omega.m$ (2 marks)

e) Describe three ways to increase the capacitance of a capacitor? (3 Marks)

Question Two

a) A series RLC circuit has a resistance of 45Ω and an impedance of 75Ω .	What average
power is delivered in this circuit when $V_{rms} = 210V$	(3Marks)

b) Consider the circuit shown below. Calculate the currents I_1 , I_2 and I_3 (3 Marks)

ALREY BRIVERSIX Y CHIERE

c) Distinguish between intrinsic and extrinsic conduction in semiconductors (2 Marks)
d) Draw a circuit diagram showing a reverse-biased diode and explain why very little current will flow. (2 Marks)

e) State two functions of a cathode ray oscilloscope

(2 Marks)

SECTION B (36 Marks)

Question Three

Consider a toroid of length L, as shown: Let the total number of turns = N, mean radius = r, circumference = L and n be the turns per unit length (n = N/L),

a) Derive an expression of total flux density **B** in terms of magnetic field vector **H** and Magnetization **M** (6 Marks)

b) A toroid core has N = 1200 turns, length L = 80cm, cross-sectional area A = 60cm², current I = 1.5A. Compute *B* and *H*. Assume an empty core. ($\mu_o = 4 \times 10^{-7} T. m/A$)

(2Marks)

PHY 122

c) Differentiate between soft magnetic materials and hard magnetic materials. Give an example of each of the materials. (4 Marks)

Question Four

ENTRY THE THE SE

a) Consider a series RC circuit shown below for which $R = 1.00M\Omega$, $C = 5.0\mu F$ and $\varepsilon = 30.0V$

i) What is the time constant of the circuit	(1 Mark)	
ii) Find maximum charge on the capacitor	(1 Mark)	
iii) Determine maximum current in the circuit	(1 Mark)	
iv) Express charge and current as a function of time	(4 Marks)	
b) Derive an expression for the energy stored in capacitor C when there is a potential		

difference V between the plates (5 Marks)

Question Five

a) An RLC circuit consists of 150 Ω resistor, a 120 μ F capacitor and 460mH inductor connected in series with $V_{\text{max}} = 120V$, 60Hz power supply.

Calculate the

(a) (i) inductive reactance,

(ii) capacitive reactance,

(2Marks)

(2Marks)

	PHY 122	COLLEGE		
	(iii) Impedance	(2Marks)		
	(b) What is the phase angle between current and applied voltage.	(2 Marks)		
	(d)Find:			
	(i) maximum current	(1Mark)		
	(ii) maximum voltage across each element	(3 Marks)		
	Question Six			
	a) Explain with the aid of labelled circuit diagrams how half-wave rectification and full-wave			
	rectification maybe achieved using a diode.	(4 Marks)		
r	b)Describe the structure of a p-n junction diode	(2 Marks)		
	A 5.00 Ω resistance is in series with 0.2H pure inductance and a $4 \times 10^{-8} F$ pure			
	capacitance. The combination is placed across 30.0V, 1780Hz power supply. Find:			
	i) Current in the circuit	(4 Marks)		
	ii) Phase angle between voltage and current	(1 Mark)		
	iii) Comment on the answers in part (a) and (b)	(1 Mark)		
	Question Seven			
	a) What is a transistor?	(1Mark)		

b) Draw a sketch of n-p-n transistor used in (i) a common-base (CB) and (ii) a commonemitter (CE)connection, showing the polarities of the batteries and direction of the currents. (4 Marks) PHY 122

c) (i) Sketch a curve of the input and output characteristics of a common emitter transistor circuit in active mode shown below. (4 Marks)

(ii) From the common emitter circuit shown in c (i) above, deduce from Kichoff's current law

that $\alpha_{dc} = \frac{\beta_{dc}}{1 + \beta_{dc}}$, where β_{dc} is the current gain

(3 Marks)

9