

COLLEGE COLLEGE

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel: +254 741 217 185 +254 736 044 469

off Busia-Malaba road

... Bastion of Knowledge

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2019 /2020 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION/THIRD YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (APPLIED STATISTICS WITH COMPUTING)

COURSE CODE:

STA 216

COURSE TITLE:

MATHEMATICAL STATISTICS II

DATE: 28TH OCTOBER, 2020

TIME: 0900 - 1200 HRS

INSTRUCTION TO CANDIDATES

a) SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

STA 216: MATHEMATICAL STATISTICS II

STREAM: ASC

DURATION: 3 hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and any THREE from section B.

SECTION A [31 Marks] Answer All questions]

QUESTION ONE [15 MARKS]

a) Define the following terms giving examples

[6 marks]

- a) Joint probability density function.
- b) Stochastic independence.
- c) Marginal density.
- b) If X and Y have joint p.d.f f(x, y) describe the conditional density of X given Y.

[3 Marks]

c) Let the joint p.d.f of
$$x_1$$
 and x_2 be $f(x_1, x_2) = \begin{cases} x_1 + x_2, & 0 < x_1 < 1, & 0 < x_2 < 1 \\ & 0 \text{ elsewhere} \end{cases}$

a) Find the marginal probability density function of x_1 and x_2 .

[3 marks]

b) Show that x_1 and x_2 are dependent.

[3 marks]

QUESTION TWO [16 MARKS]

Let X, Y, and Z have a joint pdf $X, Y, Z \in \mathbb{R}^3$

$$f(X, Y, Z) = \frac{1}{K}, 0 < X < 1, 0 < Y < 1, 0 < Z < 1$$

Find the

a) Value of K
b) Marginal density functions f(X), f(Y) and f(Z)
c) Conditional density function f(X/YZ), f(Z/XY)
d) Expectation E(Y/XY)
[2 marks]

SECTION B [39 Marks] ANSWER ANY THREE QUESTIONS

QUESTION THREE [13 MARKS]

a) Describe any three properties of a characteristic function

[6 Marks]

b) Let X_1 and X_2 be independent, with X_1 normal (0,1) and X_2 chi-square with r degrees of freedom. Show that the random variable $Y = \sqrt[7]{r} X_1 / \sqrt{X_2}$ has the T distribution with r degrees of freedom. [7 Marks]

QUESTION FOUR [13 MARKS]

Let X_1, X_2 , and X_3 be independent standard normal random variables

$$Y_1 = X_1$$

$$Y_2 = X_1 + X_2 + X_3$$

$$Y_3 = X_1 + X_3$$

Obtain the

[7 marks]

b) Density function of Y_1

[6 marks]

QUESTION FIVE [13 MARKS]

Given that $X_1, ..., X_n$ is a random sample from N(0,1) obtain the distribution of sample mean, \overline{X} , using the moment generating function technique. [13 marks]

QUESTION SIX [13 MARKS]

Let X_1 and X_2 be two independent random variables that have gamma distribution be distributed as $Gamma(\alpha, 1)$ and X_2 be distributed as $Gamma(\beta, 1)$. Let $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1 + X_2}$.

a) Determine whether Y_1 and Y_2 are independent

[10 Marks]

b) Find the distribution of Y_1 and Y_2

[3 marks]

QUESTION SEVEN [13 MARKS]

a) Let $Y = X_1 + X_2 + ... + X_{15}$ be the sum of a random sample of size 15 from the distribution whose density function is given by;

$$f(x) = \begin{cases} \frac{3}{2}x^2 & \text{if } -1 < x < 1\\ 0 & \text{Otherwise} \end{cases}$$

- c) Using central limit theorem calculate the approximate value of $P(0.3 \le Y \le 1.5)$ [5 Marks]
- d) If $X \sim N(\mu, \sigma^2)$ obtain the characteristic function.

[8 Marks]