

OFFICE OF THE DEPUTY PRINCIPAL
ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (APPLIED STATISTICS)

COURSE CODE:

MAT 210

COURSE TITLE:

CALCULUS II

DATE: 14TH DECEMBER, 2018

TIME: 9.00 AM - 12.00 PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

MAT 210

REGULAR-MAIN EXAM

MAT 210: CALCULUS II

STREAM:BSC(APP.Stat)	DURATION:3	Hours
----------------------	-------------------	-------

INSTRUCTION TO CANDIDATES

- i) Answer ALL questions in SECTION A and any other THREE questions in SECTION B.
- ii) Do not write on the question paper.

SECTION A: [31 MARKS]

Question One: [16 marks]

a) Evaluate the given integrals

i)
$$\int (2e^x + \frac{6}{x} + \ln 2) dx$$

3mks

ii)
$$\int \frac{x^2+3x-2}{\sqrt{x}} dx$$

3mks

iii)Compute the area bounded between the curves

$$y = x^3$$
 and $y = 4x$

3mks

b) Compute the following double integral over the indicated rectangle.

$$\int \int \frac{1}{(2x+3y)^2} dx dy$$
, D=[0,1]X[1,2].

3mks

c) Evaluate the following definite integral.

$$\int_{\ln\frac{1}{2}}^{2} (e^{t} - e^{-t}) dt$$

4mks

Question Two: [15 marks]

a) Find the first 4 terms of the taylors series for the function $\ln x$ centered

at a=1.

4mks

b) Find the following antiderivatives:

i) $\int e^{2x} \cos(x) dx$

3mks

ii) $\int \sin^2 x \cos^2 x dx$

3mks

c) Determine all the numbers c which satisfy the conclusions of the mean value theorem for the following function

$$h(z) = 4z^3 - 8z^2 + 7z - 2$$
 on [2,5].

5mks

SECTION B: [39 MARKS]

Question Three: [13 marks]

Compute the following double integrals

a) $\int_{2}^{4} \int_{1}^{2} 6xy^{2} dy dx$

2mks

b)
$$\int_0^1 \int_1^2 \frac{1}{(2x+3y)^2} dy dx$$

3mks

c)
$$\int_{-1}^{2} \int_{0}^{1} x e^{xy} dy dx$$

3mks

d)
$$\int_0^1 \int_{-2}^{-1} x^2 y^2 + \cos(\pi x) + \sin(\pi y) dy dx$$

3mks

e)
$$\int_{-2}^{3} \int_{0}^{\frac{\pi}{2}} x \cos^{2}(y) dy dx$$

2mks

Question Four: [13 marks]

Let f be twice differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).

a) Explain why there must a value c for 2 < c < 5 such that f'(c) = -1.

3mks

- b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 0 4mks
- c) Show that if f''(x) = 0 for all x, then the graph of g does not have a point of inflection.
- d) Let h(x)=f(x)-x. Explain why there must be a value r for 2 < r < 5 such that h(x)=0

Question Five: [13 marks]

a) Evaluate the following integral

 $\int \int \int_{B} 8xyzdv, \text{ B=[2,3]x[1,2]x[0,1]}$

4mks

b) Determine the following antiderivatives

i) $\int sinxcos^2 2x dx$

4mks

ii)
$$\int \frac{2x-3}{x^3-3x^2+2x} dx$$

5mks

Question Six: [13 marks]

a) Find the Taylor series for $f(x) = x^4 + x - 2$ about a = 1

4mks

b) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions

i) $f(x,y) = (x^2 - 1)(y + 2)$

3mks

ii)
$$f(x,y) = e^{x+y+1}$$

3mks

iii)
$$f(x, y) = e^{-x} sin(x + y)$$
.

3mks

Question Seven: [13 marks]

a) Determine if the following sequences converge or diverge. If the sequence converges determine its limit.

i)
$$\left\{\frac{3n^2-1}{10n+5n^2}\right\}_{n=2}^{\infty}$$

3mks

$$\mathrm{ii}\big)\big\{\frac{(-1)^n}{n}\big\}_{n=1}^{\infty}$$

3mks

b) Compute
$$\int x^2 arctan(2x) dx$$

3mks

c) Evaluate $\int \int_D 4xy - y^3 dA$, D is the region bounded by $y = \sqrt{x}$ and

$$y=x^3.$$

4mks

END