

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2018/2019 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (APPLIED STATISTICS WITH COMPUTING)

COURSE CODE:

STA 216

COURSE TITLE:

MATHEMATICAL STATISTICS II

DATE: 15/4/2019

TIME: 9.00 AM-12.00 PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

STA 216: MATHEMATICS STATISTICS II

STREAM: ASC

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and any THREE from section B.

SECTION A (31 marks): Answer ALL questions.

QUESTION ONE (15 Marks)

a. If X and Y are independent random variables with joint probability density

$$f(x,y) = \begin{cases} \frac{k}{1 + X^2 + Y^2 + X^2Y^2}, & -\infty < X < \infty, & -\infty < Y < \infty \\ 0, & elsewhere \end{cases}$$

i. Find k

(4 marks)

ii. Determine if X and Y are independent

(2marks)

b. Let Y_1 , Y_2 , Y_3 , Y_4 denote order statistics of order 4 from a distribution having pdf $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$

Find

i)
$$f_{Y_1}(y), f_{Y_3}(y)$$

(6 marks)

ii)
$$f_{Y_1 Y_2}(x, y)$$
 for $x < y$

(3 marks)

OUESTION TWO (16 Marks)

Let Y_1, Y_2 , and Y_3 have a joint pdf $Y_1Y_2Y_3 \in \mathbb{R}^3$

$$f(Y_1,Y_2,Y_3) = \begin{cases} \frac{1}{(2\pi)^{3/2}} e^{-1/2(Y_1^2 + Y_2^2 + Y_3^2)}, -\infty < Y_1 < \infty, -\infty < Y_2 < \infty \ , -\infty < Y_3 < \infty \\ 0, & elsewhere \end{cases}$$

i. Find the marginal density functions $f(Y_1)$, $f(Y_2)$ and $f(Y_3)$

(6 marks)

ii. Find the conditional density function $f(Y_2/Y_1Y_3)$, $f(Y_3/Y_1Y_2)$. Comment on the density considering (i) above (10 marks)

SECTION B (39Marks)

QUESTION THREE (13Marks)

Let X_1 , be distributed as $Gamma(\alpha, 1)$ and X_2 be distributed as $Gamma(\beta, 1)$ and further X_1 and X_2 are independent. Let $Y_1 = \frac{X_1}{X_1 + X_2}$ and $Y_2 = X_1 + X_2$.

- i. Find the joint distribution of Y_1 and Y_2 (6marks)
- ii. Find the distribution of Y_2 (6 marks)
- iii. Are Y_1 and Y_2 independent? (1 mark)

QUESTION FOUR (13Marks)

- a. If X follows a $binomial(n, \pi)$ distribution obtain its characteristic function. (3 marks)
- b. i. Given that X is a discrete random variable with mean μ and variance σ_{χ}^{2} show that

$$Pr(|X - \mu|) \ge k\sigma_x$$
) $\le \frac{1}{k^2}$ (5 marks)

ii. Hence find the lower bound for Pr(17 < X < 33) and the upper bound for the Pr(x > 33), given that the mean X = 25 and variance = 16. (5 marks)

QUESTION FIVE (13Marks)

a. Obtain the moment generating function for the exponential distribution with parameter λ , i.e.

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & elsewhere \end{cases}$$

(5 marks)

b. Suppose X and Y are independent random variables with $\text{Exp}(\lambda)$ distributions.

Using the transformation rule, find the joint density function of U = X + Y. and V = X (8 marks)

QUESTION SIX (13Marks)

Let Y_1 , Y_2 , and Y_3 be independent standard normal random variable:

$$X_1 = Y_1$$

$$X_2 = \frac{Y_1 + Y_2}{2}$$

$$X_3 = \frac{Y_1 + Y_2 + Y_3}{3}$$

i. Obtain the joint pdf of X_1 , X_2 and X_3

(6 marks)

ii. Obtain the marginal density function of X_2

(7 marks)

QUESTION SEVEN (13MARKS)

a) Show the proof of existence of a characteristic function

(5marks)

b. Given that $X_1, X_1, ..., X_n$ are identically and independent random variables from Bernoulli(p). Define $Y = X_1 + X_1 + ..., + X_n$. Find the distribution of Y, using the moment generating function technique. (8 marks)