

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel: +254 741 217 185 +254 736 044 469

off Busta-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAREXAMINATION

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE:

COM 215

COURSE TITLE:

ELECTRICAL CIRCUITS

DATE: 13TH DECEMBER, 2018

TIME: 9.00 AM - 12.00 NOON

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any other THREE questions.
- ii. Maps and diagrams should be used whenever they serve to illustrate the answer
- iii. Do not write on the question paper

SECTION A (24 MARKS) COMPULSORY

QUESTION ONE (12 Marks)

- a. Find the total charge in a cylindrical conductor (solid wire) and compute the current flowing in the wire.5 Marks
- b. State Kirchhoff's voltage and current laws. 3 Marks
- c. Apply both KVL and KCL to each of the two circuits depicted in Figure 1a & 1b below to obtain equations for each of the two circuits by applying KCL and KVL. 8 Marks

Fig. 1a

Fig. 1b

d. Determine the voltage v3 in the circuit of Figure 2.

4 Marks

Fig. 2

QUESTION TWO (12 Marks)

- a) State Superposition theorem. (3 Marks)
- b) A 200 V, 50 Hz, inductive circuit takes a current of 10A, lagging 30 degree. Find
 - (i) the resistance

(ii) reactance

(iii) inductance of the coil.

(9 Marks)

SECTION B (36 MARKS)

QUESTION THREE (12 Marks)

a. Find C_{eq} in figure below. Clearly show your working and reasoning. (6 Marks)

b. A resistance R, an inductance L=0.01 H and a capacitance C are connected in series. When an alternating voltage v=400sin(3000t-20°) is applied to the series combination, the current flowing is 10 2 sin(3000t-65°). Find the values of R and C. (6 Marks)

QUESTION FOUR (12 Marks)

a) Use superposition to find the current i_0 in the circuit in Figure 3.

(6Marks)

b) Obtain the Thevenin equivalent of the circuit in Figure 5 with respect to the terminals a-b.

(6Marks)

QUESTION FIVE (12 Marks)

- a. A wire carries a steady current of 0.1 A over a period of 20 s. What total charge passes through the wire in this time interval? (4 Marks)
- b. A metallic conductor has a resistivity of $18 \times 10^{-6} \Omega \cdot m$. What is the resistance of a piece that is 30 m long and has a uniform cross-sectional area of 3.0 mm²? (4 Marks)
- c. If $R_1 = R_2 = R_3 = R_4 = 10\Omega$ and $R = 20 \Omega$, what is the equivalent resistor of the circuit? (4 Marks)

QUESTION SIX (12 Marks)

- a. State Thevenin's theorem and by use of diagram(s), explain its application in electrical circuits analysis. (3 Marks)
- b. From first principles, prove that in a series circuit for three resistors R_1 , R_2 , and R_3 , the effective resistance (R_{eff}) is given by $R_{eff} = R_1 + R_2 + R_3$ (3 Marks)
- c. Define Laplace transform of a function f(t); hence find the Laplace transforms for the function (3Marks)
- d. Explain the operation of a series circuit. (3 Marks)

QUESTION SEVEN (12 Marks)

- a. State Norton's theorem and by use of an appropriate diagram explain its application in electrical circuit analysis. (4 Marks)
- b. Define the following terms as applied in electrical principles circuitries: (4 Marks)

i. Impedance

iv. Conductance

c. Explain the operation of a parallel circuit, hence from first principles prove that in a parallel circuit for the three resistors R_1 , R_2 , and R_3 , the resistance (R_{eff}) is given by $R_{eff} = R_1R_2R_3/(R_1R_2+R_2R_3+R_3R_1)$ (4 Marks)
