

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER REGULAR

EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 318

COURSE TITLE:

COORDINATION CHEMISTRY

DATE: 3RD NOVEMBER, 2020 TIME: 0900 – 1200 HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

CHE 318

REGULAR – MAIN EXAM

CHE 318: COORDINATION CHEMISTRY

STREAM: BED (Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- *i.* Answer ALL questions.
- *ii. Diagrams may be used whenever they serve to illustrate the answer.*

Question One

b)

a) Define the following terms as applied in coordination chemistry.

i)	Coordination compound	(1 Mark)
ii)	Hard acid	(1 Mark)
iii)	Coordination number	(1 Mark)
iv)	Ligand	(1 Mark)
v)	Nephelauxetic effect	(1 Mark)
Draw the shapes of the d orbitals indicating clearly their electron densities		
distribution with respect to x, y and z axes		(2 Marks)

c) The table below shows some properties of chromium ammonate chlorides.Study it and answer the questions that follow;

Compound	Conductivity
CoCl ₃ .6NH ₃	High
CoCl ₃ .5NH ₃	Medium
CoCl ₃ .4NH ₃	Low
CoCl ₃ .3NH ₃	Low

- i) Determine the primary and secondary valences of chromium in the compounds (1 Mark)
 ii) Draw Werner's representations of the compounds and comment on the trend of conductivity of the compounds (4 Marks)
- iii) What is the effective atomic number of Co in the compounds? (1 Mark)

Question Two

a)	Molecular orbital theory is superior to crystal field theory in accounting	
	for bonding in metal complexes. Give three reasons to defend this statement	(3 Marks)

b) Give two advantages and two disadvantages of the crystal field theory (4 Marks)

CHE 318

c)	Show how the d orbitals are perturbed in a square planar field	(1 Mark)	
d)	State and explain three factors that determine the magnitude of $\Delta_{\text{splitting}}$	(3 Marks)	
e)	The $[Cr(H_2O)_6]^{3+}$ is paramagnetic with µspin-only value of 2.83 Bohr		
	Magneton. Is the complex a high- spin (spin free/weak field) or low-spin		
	(spin paired/Strong field)? Briefly explain your answer	(3 Marks)	
Qı	uestion Three		
a)	a) Write short notes on the following types of isomerism in co-ordination		
	compounds giving one example in each case:		
	i) Ionization isomerism	(2 Marks)	
	ii) Linkage isomerism	(2 Marks)	
	iii) Geometric isomerism	(2 Marks)	
b)	The complex $[RhF_6]^{3-}$ is octahedral and paramagnetic with a calculated		
	$\mu_{spin-only}$ value of 4.90 BM. Account for the bonding in this complex		
	using the valence bond theory	(3 Marks)	
c)	Describe the type of electronic transitions in metal complexes	(3 Marks)	
d)	Describe the three special features in an electronic spectrum	(3 Marks)	
Qı	iestion Four		
a)	What is the experimental evidence for the Jahn-Teller distortions in a metal		
	complex?	(1 Mark)	
b)	Which of the following octahedral complexes will undergo Jahn-Teller		
	distortion? Briefly explain your answer		
	i) Low spin Fe^{2+}	(1 Mark)	
	ii) Cu ²⁺	(1 Mark)	
(At	tomic numbers: $Fe = 26$, $Cu = 29$)		
c)	Workout the ground state term symbols for the following ions		
	i) High spin octahedral Mn ²⁺	(1 Mark)	
	ii) Octahedral Cr ³⁺	(1 Mark)	
d)	Calculate the crystal field stabilization energy (CFSE) of a d ⁶ complex in,		
	i) Strong field	(1 Mark)	
	ii) Weak field	(1 Mark)	

CHE 318

e)	Briefly defend the following scientific observations	
	a) Δ_{oct} is greater than Δ_{tert}	(2 Marks)
	b) Square planar Au ²⁺ complexes readily oxidize to Au ³⁺	
	[Hint: Au^{2+} is a d ⁹]	(2 Marks)
	c) Low spin octahedral d ⁶ complexes are more stable than high spin	
	complexes.	(2 Marks)
	d) d-d electronic transition in $(Co(H_2O)_6]^{2+}$ is spin allowed while in	
	high-spin $[Mn(H_2O)_6]^{2+}$ is spin-forbidden	(2 Marks)
Question Five		
a)	Draw the structure of the following ligands and indicate whether	
	they are mono or polydentate	
P	i) Oxalato	(1 Mark)
	ii) Pyridine	(1 Mark)
	iii) EDTA	(1 Mark)
b)	Give the systematic I.U.P.A.C names of the following complexes	
	i) $[Co(NH_3)_6][Cr(CN)_6]$	(1 Mark)
	ii) $[Pt(NH_3)_4][PtCl_4]$	(1 Mark)
c)	Explain briefly any two rules of an electronic transition	(2 Marks)
d)	State two applications of co-ordination compounds	(1 Mark)
e)	Account for the following observations	
	i) $[Ni(Cl)_4]^{2-}$ is paramagnetic but $[Ni(CN)_4]^{2-}$ is diamagnetic	(4 Marks)
	ii) In $[Cr(H_2O)_6]^{2+}$, two of Cr-OH ₂ bonds are longer than others	(1 Mark)