

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR ACADEMICS, RESEARCH AND STUDENTS AFFAIRS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE COMPUTER SCIENCE

COURSE CODE:

MAT 417E

COURSE TITLE:

FLUID MECHANICS

DATE: 13th JAN 2024

TIME:11:00-2:00PM

INSTRUCTION TO CANDIDATES SEE INSIDE

DELEGIE II IOLD L

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 417E: FLUID MECHANICS

STREAM: BED

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- ii. Do not write on the question paper.

SECTION A (31 MARKS): Answer all questions in this section.

QUESTION ONE (16 MARKS)

a) Name and define the types of fluids

(4mks)

- b) Derive the equation of streamlines for a steady or unsteady, uniform or non-uniform, viscous or inviscid and compressible or incompressible three dimensional flow (4mks)
- c) Given u = -x + t + 2, v = y t + 2, determine the path lines.

(3mk

d) A stream in a horizontal pipe after passing a constriction whose cross sectional area is A is delivered at a atmospheric pressure at a a place where the cross-sectional area is B. If is a side tube is connected with the pipe at the point where the cross-sectional area is A, water will be sucked up through it into the pipe from a reservoir at a depth (h) given by $h = \frac{s^2}{2\sigma} \left(\frac{1}{A^2} - \frac{1}{B^2} \right)$ below the pipe. s being the delivery per second. Prove this finding by

applying Bernoulli and continuity equations.

(5mks)

QUESTION TWO (15 MARKS)

a) Name the main thermodynamic variables

(5mks)

b) Prove that $C_p - C_v = R$ where R is the gas constant

(10mks)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION THREE (13 MARKS)

a) The velocity field in a fluid is given as $\vec{q} = 5x^3i - 15yx^2j$. Determine

i. The fluid velocity at an instant point P(1,1,1)

(2mks)

ii. The acceleration of this fluid at any time, t

(5mks)

b) In a two dimensional flow, defined by the following velocity field $\vec{q} = \frac{-y}{b^2}i + \frac{x}{a^2}j$ where a and b are constants, determine the equation of the streamline of this flow passing through point X(a,0). Sketch the flow pattern. (6mks)

QUESTION FOUR (13 MARKS)

b) Given u = 2y, v = -2x. Determine:

ii. the streamlines (4mks)

QUESTION FIVE (13 MARKS)

A long straight pipe of length L has a slowly tapering circular cross-sectional area. Its inclined so that it makes an angle α to the horizontal with its smaller cross-section downwards. The radius of the pipe at the upper end is twice that at the lower end. If water is pumped at a steady rate through the pipe to emerge at atmospheric pressure π and the pumping pressure is twice the emerging pressure, show that the fluid leaves the pipe with speed $\mu^2 = \frac{32}{15} \left[gL \sin \alpha + \frac{\pi}{\rho} \right]$ where ρ is the fluid density and g is the gravitational acceleration. (13mks)

QUESTION SIX (13 MARKS)

Given that $U = \frac{-c^2y}{r^2}$, $V = \frac{c^2x}{r^2}$, w = 0, where r denotes distance from z-axis, determine

QUESTION SEVEN (13 MARKS)

Given that the potential ϕ of a flow is defined as $\phi = \frac{1}{2} \log \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$, determine whether the flow exist, hence find the velocity vector for this flow

(13mks)