

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR
ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER REGULAR MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS/SCIENCE

COURSE CODE:

MAT 312

COURSE TITLE:

COMPLEX ANALYSIS I

DATE: 19th DECEMBER 2023

TIME:

2.00PM - 5.00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

1144

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and ANY from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section.

QUESTION ONE (16 Marks)

- a) Find all solutions of the complex number $z^2 = -5 + 12i$ and give your answer in the form z = x + iy. (4 Marks)
- b) Differentiate the following complex functions from first principles:
 - $f(z) = z^2 + z ag{2 Marks}$
 - f(z) = 1/z (3 Marks)
- c) Write the function f(z) = |z| in the form u(x, y) + iv(x, y). Using the Cauchy-Riemann equations, decide whether there are any points in \mathbb{C} at which f is differentiable. (4 Marks)
- d) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{z^n}{n!}$. (3 Marks)

QUESTION TWO (15 Marks)

- a) Let γ denote the circular path with centre 1 and radius 1, described once anticlockwise and starting at the point 2. Let $f(z) = |z|^2$. Write down a parametrisation of γ . Hence calculate $\int_{\gamma} |z|^2 dz$. (6 Marks)
- b) Find the Taylor expansion of $\sin^2 z$ around 0 and find the radius of convergence. (4 Marks)
- c) Let $f(z) = z^3$, $f : \mathbb{C} \to \mathbb{C}$. Determine real-valued functions u, v so that f(z) = u(x, y) + iv(x, y) (where z = x + iy). Verify that both u and v satisfy Laplace's equation. (5 Marks)

SECTION B (39 Marks)

Answer ANY THREE questions.

QUESTION THREE (13 Marks)

- a) Let $w_0 \neq 0$ be a complex number such that $|w_0| = r$ and $\arg w_0 = \theta$. Find the polar forms of all the solutions z to $z^n = w_0$, where $n \geq 1$ is a positive integer. (4 Marks)
- b) Let $z, w \in \mathbb{C}$. Show that
 - $\overline{z+w}=\bar{z}+\bar{w}$