

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR

ACADEMICS, RESEARCH AND STUDENTS AFFAIRS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 112

COURSE TITLE:

INTRODUTION TO ANALYTICAL CHEMISTRY

DATE: 21.12.2022

TIME: 9 am-12pm

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

CHE 112: INTRODUTION TO ANALYTICAL CHEMISTRY

STREAM: BED (Scie)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

Answer all questions

Question One		
a)	Explain the meaning of the following terms	
	i. Qualitative analysis	(2 Marks)
	ii. Quantitative analysis	(2 Marks)
b)	Describe the classification of quantitative analysis methods into various	
	categories based on the nature of the measurement	(8 Marks)
Qı	uestion Two	
a)	List the various steps in a typical quantitative analysis	(4 Marks)
b)	Describe the preparation of 2.000 L OF 0.0500 M AgNO ₃ (169.87 g/mol)	
	from the primary standard grade solid	(4 Marks)
c)	A standard 0.0100 M solution of Na ion is required to calibrate an ion selective	
	electrode method to determine sodium. Describe how 500 mL of this solution	
	can be prepared from primary standard Na ₂ CO ₃ (105.99 g/mL)	(2 Marks)
d)	Describe the mechanism of precipitate formation	(2 Marks)
Question Three		
a)	What is sampling?	(1 Marks)
b)	What are the goals of an analytical separation?	(3 Marks)
c)	Explain the following with respect to liquid chromatography;	
	i) Partition chromatography	(1 Marks)
	ii) Adsorption chromatography	(1 Marks)
	iii) Ion-exchange chromatography	(1 Marks)
	iv) Size-exclusion chromatography	(1 Marks)
d)	What does the work of an analytical chemist entail?	(2 Marks)
(c)	Explain the importance of Beer Lambert's law	(2 Marks)

Question Four

a) A 7.25x 10⁻⁵ M solution of potassium permanganate has a transmittance of 44.1% when measured in a 2.10 cm cell at a wavelength of 525 nm. Calculate:

- i. the absorbance of this solution (2 Marks)
- ii. the molar absorptivity of KMnO₄ (2 Marks)
- b) Calculate:
 - the wavenumber of a beam of infrared radiation with a wavelength
 of 5.00 μm
 (2 Marks)
 - ii) Calculate the energy in joules of one photon of radiation with the above wavelength (2 Marks)
- c) Describe the categories of separation methods alongside the principle behind each separation method (4 Marks)

Question Five

- a) Describe a Case Study Illustrating the Use of Analytical Chemistry to Solve a

 Problem in Toxicology (10 Marks)
- b) The calcium in a 200.0-mL sample of a natural water was determined by precipitating the cation as CaC₂O₄. The precipitate was filtered, washed, and ignited in a crucible with an empty mass of 26.6002 g. The mass of the crucible plus CaO (56.077 g/mol) was 26.7134 g. Calculate the concentration of Ca (40.078 g/mol) in water in units of grams per 100 mL of the water (2 Marks)

Question Six

- a) List several properties of ideal precipitates (2 Marks)
- b) A bottle of metal hydrate BaCl₂.2H₂O is mixed with an unknown amount of KCl. In order to find the purity of the BaCl₂.2H₂O, we heat 9.51g of the metal hydrate mixture to remove water from the sample. After heating, the sample has a reduced mass of 9.14g.
 - i) calculate change in sample mass (1 Mark)
 - ii) Calculate the moles of evaporated water (1 Mark)
 - iii) calculate moles of BaCl₂.2H₂O (1 Mark)
 - iv) calculate mass of BaCl₂.2H₂O in grams (1 Mark)
 - v) calculate the mass percent of BaCl_{2.2}H₂O in the original sample (1 Mark)

(3 Marks)