

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF **EDUCATION SCIENCE**

COURSE CODE: PHY 221

COURSE TITLE: ELECTRICITY AND MAGNETISM II

DATE: 9TH JULY, 2022

TIME: 0900 - 1200 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF PRINTED PAGES

PLEASE TURN OVER

REGULAR-MAIN EXAMINATION

PHY 221: ELECTRICITY AND MAGNETISM II

STREAM: BED (Scie)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer questions ONE and TWO in section A and any other THREE questions from section B.
- ii. The following constants might be useful:

$$1eV = 1.6 \times 10^{-19} J$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

$$\varepsilon_a = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$$

SECTION A (28 MARKS)

Question One (14 Marks)

- a. Write down the expressions for the following laws hence give their physical interpretations.
 - i. Faraday's law

(2 marks)

ii. Gauss's law for E

(2 marks)

b. Define capacitive reactance (χ_C) and inductive reactance (χ_L).

(2 Marks)

c. A 10.0 Mh inductor carries current $i = I_{\text{max}} \sin \omega t$, with $I_{\text{max}} = 5.00 \text{ A}$ and

 $f = \omega/2\pi = 60.0$ Hz. What is the self-induced emf?

(5 Marks)

d. How does a dielectric material impact on the capacitance of a capacitor?

(3 marks)

Question Two (14 marks)

a. Define the term alternating current, hence give its symbol

(2 marks)

- b. State five features of electromagnetic waves described by one dimensional wave equation (5 marks)
- c. Two dielectrics with dielectric constants k1 & k2 each fill half the space between the plates of a parallel-plate capacitor as shown in *Figure 1* below

Figure 1

Given that each plate has an area A and the separation distance is d. compute the capacitance

of the system.

(5 marks)

d. Distinguish between an electric and magnetic field

(2 marks)

SECTION B (42 MARKS)

Question Three (14 marks)

An infinite straight wire carrying current *I*, is placed to the left of a rectangular current loop of wire of width *w* and length *I*, as shown on the *Figure 2* below

Figure 2

- a. Determine the magnetic flux through the rectangular loop due to the current I (5 marks)
- b. Given that, the current I is a function of time I(t) = a + bt, where a and b are positive constants. Determine:

i. Induced emf in the loop
 ii. Direction of the induced current
 (4 marks)
 (2 marks)

c. Briefly describe an ac RCL circuit

(3 marks)

Question Four (14 marks)

A conducting rod of length *l* is free to slide on two parallel conducting bars as shown in the *Figure* 3 below.

Figure 3

In addition, two resistors R_1 & R_2 are connected across the ends of the bars. There is a uniform magnetic field pointing into the page. Given that, the bar is pulled to the left externally with a constant speed v. Determine:

a. The current through both resistors
b. The total power delivered to the resistors
c. The applied force needed for the rod to maintain a constant velocity
(5 marks)
(5 marks)

Question Five (14 Marks)

- a) A resistor $(9 \times 10^2 \Omega)$, a capacitor $C = 0.25 \, \mu \text{F}$, and an inductor $(L = 2.50 \, \text{H})$ are connected in series across a $2.40 \times 10^2 \, \text{Hz}$ AC source for which $\Delta V_{\text{max}} = 1.40 \times 10^2 \, \text{V}$.
 - i. Calculate the impedance of the circuit. (4 Marks)
 - ii. the maximum current delivered by the source, and (4 Marks)
 - iii. the phase angle between the current and voltage. (4 Marks)
 - iv. Is the current leading or lagging the voltage? (2 marks)

Question Six (14 marks)

- a. Distinguish between a capacitor and an inductor (2 marks)
- b. Define self-inductance and self-induced emf. (2 Marks)
- c. Show that at resonant frequency (f_o) , $f_o = \frac{1}{2\pi\sqrt{LC}}$ and the applied voltage and current

are in phase. (5 Marks

d. A 30-turn circular coil of radius 4.00 cm and resistance 1.00Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies with time according to the expression $B = 0.01t + 0.04t^2$, where B is in Tesla and t is in seconds. Calculate the induced emf in the coil at $t = 0.5 \, \text{s}$. (5 Marks

Question Seven (14 marks)

- a. Write down the Maxwell's equations in the absence of sources where Q = 0 and I = 0. (4 Marks)
- b. By taking partial derivatives of the following expressions with respect to x and then t,

$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$
 and $-\frac{\partial B_z}{\partial x} = \mu_o \varepsilon_o \left(\frac{\partial E_y}{\partial t}\right)$, verify that both electric and magnetic fields

satisfy the one-dimensional wave equation. (5 Marks)

c. Define the poynting vector and give its's physical meanig. (2 Marks)

d. Derive the expression of intensity of the wave, *I*, defined as the time average of the pointing vector. (3 Marks)
