

## OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

# UNIVERSITY EXAMINATIONS 2021 /2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER REGULAR EXAMINATION

# FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS AND SCIENCE

**COURSE CODE:** 

**MAT 214** 

COURSE TITLE:

**VECTOR ANALYSIS** 

**DATE: 9<sup>TH</sup> JUNE, 2022** 

TIME: 1400 - 1700 HRS

#### INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

#### <u>REGULAR – MAIN EXAM</u> MAT 214 VECTOR ANALYSIS

STREAM: BED (Arts/Science)

**DURATION: 3 Hours** 

#### INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

#### SECTION A (31 Marks)

#### Answer ALL questions in this section.

#### Question One (16 Marks)

- a) Find a unit vector parallel to the resultant of vectors  $r_1 = 2\mathbf{i} + 4\mathbf{j} 5\mathbf{k}$ ,  $r_2 = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ . (5 Marks)
- b) A particle moves along a curve whose parametric equations are  $x = e^{-t}$ ,  $y = 2\cos 3t$ ,  $z = 2\sin 3t$ , where t is the time.
  - i) Determine its velocity and acceleration at any time. (3 Marks)
  - ii) Find the magnitudes of the velocity and acceleration at t = 0. (3 Marks)
- c) If  $\vec{A}$  has constant magnitude, show that  $\vec{A}$  and  $\frac{d\vec{A}}{dt}$  are perpendicular provided  $\left|\frac{d\vec{A}}{dt}\right| \neq 0$ . (5 Marks)

#### Question Two (15 Marks)

- a) If  $\phi(x, y, z) = 3x^2y y^3z^2$  find  $\nabla \phi$  at the point (1, -2, -1). (4 Marks)
- b) Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $z = x^2 + y^2 3$  at the point (2, -1, 2). (6 Marks)
- c) Find the total work done in moving in a force field given by  $\vec{F} = 3xy\mathbf{i} 5z\mathbf{j} + 10x\mathbf{k}$  along the curve  $x = t^2 + 1$ ,  $y = 2t^2$ ,  $z = t^3$  from t = 1 to t = 2.

(5 Marks)

#### SECTION B (39 Marks)

#### Answer any THREE questions.

#### Question Three (13 Marks)

- a) Evaluate  $\iint_S \vec{A} \cdot n \, dS$ , where  $\vec{A} = z\mathbf{i} + x\mathbf{j} 3y^2z\mathbf{k}$  and S is the surface of the cylinder  $x^2 + y^2 = 16$  included in the first octant between z = 0 and z = 5. (8 Marks)
- b) Find the work done in moving a particle once around a circle *C* in the *xy* plane, if the circle has center at the origin and radius 3 and if the force field is given by (5 Marks)

### $\vec{F} = (2x - y + z)\mathbf{i} + (x + y - z^2)\mathbf{j} + (3x - 2y + 4z)\mathbf{k}$

#### Question Four (13 Marks)

- a) Find the curl(rf(r)) where f(r) is differentiable. (5 Marks)
- b) Find an equation for the plane determined by the points  $P_1(2,-1,1)$ ,  $P_2(3,2,-1)$  and  $P_3(-1,3,2)$ . (4 Marks)
- c) Determine a unit vector perpendicular to the plane of  $\vec{A} = 2\mathbf{i} 6\mathbf{j} 3\mathbf{k}$  and  $\vec{B} = 4\mathbf{i} + 3\mathbf{j} \mathbf{k}$ . (4 Marks)

#### Question Five (13 Marks)

- a) A man travelling southward at  $15 \text{ miles} hr^{-1}$  observes that the wind appears to be coming from the west. On increasing his speed to  $25 \text{ miles} hr^{-1}$  it appears to be coming from the southwest. Find the direction and speed of the wind. (4 Marks)
- b) Determine the vector having initial point  $P(x_1, y_1, z_1)$  and terminal point  $Q(x_2, y_2, z_2)$  and find its magnitude. (4 Marks)
- c) An airplane moves in a northwest direction at  $125mileshr^{-1}$  relative to the ground, due to the fact there is a west wind of  $50 \ mileshr^{-1}$  relative to the ground. How fast and in what direction would the plane have traveled if there were no wind? (2 Marks)
- d) Given  $r_1 = 3\mathbf{i} 2\mathbf{j} + \mathbf{k}$ ,  $r_2 = 2\mathbf{i} 4\mathbf{j} 3\mathbf{k}$ ,  $r_3 = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ . Find the magnitudes of  $2r_1 3r_2 5r_3$ . (3 Marks)

#### Question Six (13 Marks)

- a) Find the projection of the vector  $\vec{A} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$  on the vector  $\vec{B} = 4\mathbf{i} 4\mathbf{j} + 7\mathbf{k}$ . (4 Marks)
- b) If  $R(u) = x(u)\mathbf{i} + y(u)\mathbf{j} + z(u)\mathbf{k}$ , where x, y and z are differentiable functions of a scalar u, prove that  $\frac{dR}{du} = \frac{dx}{du}\mathbf{i} + \frac{dy}{du}\mathbf{j} + \frac{dz}{du}\mathbf{k}$ . (4 Marks)
- c) A particle moves so that its position vector is given by  $\mathbf{r} = \cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}$  where  $\omega$  is a constant. Show that:
  - i) The velocity  $\vec{v}$  of the particle is perpendicular to r (2 Marks)
  - ii) The acceleration  $\vec{a}$  is directed toward the origin and has magnitude proportional to the distance from the origin. (3 Marks)

#### Question Seven (13 Marks)

- a) Find a unit normal to the surface  $x^2y + 2xz = 4$  at the point (2, -2,3). (3 Marks)
- b) If  $\vec{A} = x^2 z \mathbf{i} 2y^3 x^2 \mathbf{j} + xy^2 z \mathbf{k}$ , find  $\nabla \cdot \vec{A}$  at the point (1, -1, 1). (4 Marks)
- c) A fluid moves so that its velocity at any point is v(x, y, z). Show that the loss of fluid per unit volume per unit time in a small parallel to the coordinate axes and having magnitude  $\Delta x$ ,  $\Delta y$ ,  $\Delta z$  respectively, is given approximately by  $div v = \nabla v$ . (6 Marks)