

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021 /2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS AND SCIENCE

COURSE CODE:

MAT 304E

COURSE TITLE:

ORDINARY DIFFERENTIAL

EQUATIONS II

DATE: 10TH JUNE, 2022 TIME: 1400 – 1700 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 304E ORDINARY DIFFERENTIAL EQUATIONS II

STREAM: BED (Arts/Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- Answer ALL Questions from section A and any THREE from section B. i.
- Do not write on the question paper. ii.

SECTION A (31 Marks)

Answer ALL questions in this section.

Question One (16 Marks)

a) Solve the initial value problem $\begin{cases} y'=2x(y-1)\\ y(1)=y_0 \end{cases}$ (7 Marks) b) Consider the functions $\forall x \in \mathbb{R}$, $f(x)=x, g(x)=x^2$ and $h(x)=x^3$. Use the Wroskian to show

that f, g, h are linearly independent. (5 Marks)

c) Write the general solution to y'''(x) - 2y'(x) = 0. (4 Marks)

Question Two (15 Marks)

a) What is an analytic function?

(2 Marks)

b) Write the series solution around $x_0 = 0$ of the function $f(x) = \frac{e^x}{2x+1}$ and find the radius of convergence. (5 Marks)

c) Solve the Ordinary differential equation $y' + xy = x^2$ with $y(0) = y_0$. (5 Marks)

d) Let $L: C^n(A) \to C^0(A)$ be a linear operator. Show that $\forall \lambda, \mu \in \mathbb{R}: \forall y_1, y_2 \in C^n(A)$:

(3 Marks)

$$L(\lambda y_1 + \mu y_2) = \lambda L(y_1) + \mu L(y_2)$$

SECTION B (39 Marks)

Answer any THREE questions.

Question Three (13 Marks)

(13 Marks) a) Solve the ODE initial value problem $x^3y'''(x) + x^2y''(x) - 2xy'(x) + 2y(x) = f(x), \forall x \in [1, \infty)$

22

Question Four (13 Marks)

a) Use proof by induction to show that given an $a \in \mathbb{R} - (-1)\mathbb{N}^*$ with $(-1)\mathbb{N}^* = \{-x | x \in \mathbb{N}^*\} = \{-1, -2, -3, ...\}$, we have: (7 Marks)

 $\forall n \in \mathbb{N}^* : \prod_{k=1}^{n} (k+a) = \frac{\Gamma(n+1+a)}{\Gamma(a+1)}$

b) Write the series expansion of the function $f(x) = e^x \cos x$ and find the radius of convergence. (6 Marks)

Question Five (13 Marks)

a) Solve the linear ODE

$$y''(x) + \cos(x)y(x) = 0$$

with a series around x = 0.

(13 Marks)

Question Six (13 Marks)

a) State the techniques for solving ODEs.

(2 Marks)

b) Solve the initial value problem.

(5 Marks)

$$\begin{cases} y' = y^2 \\ y(0) = y_0 \end{cases}$$

c) Solve the initial value problem

(6 Marks)

$$\begin{cases} y''(x) + \omega^2 y(x) = 0\\ y(0) = y_0 \wedge y'(0) = y_1 \end{cases}$$

Question Seven (13 Marks)

a) Find the general solution to the initial value problem

(13 Marks)

$$\begin{cases} y''(x) - xy(x) = 0\\ y(0) = a_0 \land y'(0) = a_1 \end{cases}$$
