

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR

ACADEMICS, RESEARCH AND STUDENTS AFFAIRS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR MAIN **EXAMINATION**

FOR THE DEGREE OF BACHELOR OF **EDUCATION ARTS/SCIENCE**

COURSE CODE:

MAT 311E

COURSE TITLE:

REAL ANALYSIS II

DATE:

 19^{TH} DEC 2022

TIME:

2.00PM - 5.00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES PLEASE TURN OVER

MAT 310/311E

MAT 310/311E: REAL ANALYSIS II

STREAM: BED (Arts/Science)

DURATION: 3

Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions from this section.

Question One (16 Marks)

- a) Show that an arbitrary union of open sets is open, and a finite intersection of open sets is open. (5 Marks)
- b) Let $f:A\to R$ and $g:B\to R$ where $f(A)\subset B$. Prove that if f is continuous at $c\in A$ and g is continuous at $f(c)\in B$, then $g\circ f:A\to R$ is continuous at c. (4 Marks)
- c) Suppose that $f_n: A \to R$ is bounded on A for every $n \in N$ and $f_n \to f$ uniformly on A. Then $f: A \to R$ is bounded on A. (4 Marks)
- d) Show that the constant function f(x) = 1 on [0, 1] is Riemann integrable, and $\int_0^1 1 \, dx = 1. \tag{3 Marks}$

Question Two (15 Marks)

- a) Show that if $f: A \subset R \to R$ has a local extreme value at an interior point $c \in A$ and f is differentiable at c, then f'(c) = 0. (4 Marks)
- b) Find the derivative of the function $f: R \to R$ defined by $f(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$.

 (3 Marks)
- c) Prove that the function $f(x) = x^2$ is continuous but not uniformly continuous on R. (4 Marks)
- d) Prove that the limit of a function is unique if it exists. (4 Marks)

SECTION B (39 Marks)

Answer any THREE questions from this section.

Question Three (13 Marks)

- a) Let $A = [0, \infty) \setminus \{9\}$ and define $f : A \to R$ by $f(x) = \frac{x-9}{\sqrt{x}-3}$. Show that $\lim_{x \to 9} f(x) = 6$.
- b) Define the following terms
 - i) Open set
 - ii) Connected sets
 - iii) Continuous function (6 Marks)
- c) Show that the function $f:[0,\infty)\to R$ defined by $f(x)=\sqrt{x}$ is continuous on $[0,\infty)$.

Question Four (13 Marks)

a) Prove that a set of real numbers is connected if and only if it is an interval.

(7 Marks)

b) A function $f:A\to R$ is not uniformly continuous on A if and only if there exists $\epsilon_0>0$ and sequences $(x_n),(y_n)$ in A such that $\lim_{n\to\infty}|x_n-y_n|=0$ and $|f(x_n)-f(y_n)|\geq \epsilon_0$ for all $n\in N$. (6 Marks)

Question Five (13 Marks)

- a) Suppose that $f:[a,b] \to R$ is a continuous function on a closed, bounded interval. Prove that f([a,b]) = [m,M] is a closed, bounded interval. (4 Marks)
- b) Show that the function $f: R \to R$ defined by $f(x) = x^{1/3}$ is differentiable at $x \neq 0$ with $f'(x) = \frac{1}{3x^{2/3}}$. (5 Marks)
- c) Suppose that $f:[a,b] \to R$ is continuous on the closed, bounded interval [a,b], differentiable on the open interval (a,b), and f(a)=f(b). Prove that there exists a < c < b such that f'(c)=0. (4 Marks)

Question Six (13 Marks)

- a) Prove that a sequence (f_n) of functions $f_n:A\to R$ converges uniformly on A if and only if it is uniformly Cauchy on A. (9 marks)
- b) Suppose that $f:[a,b] \to R$ is continuous on the closed, bounded interval [a,b] and differentiable on the open interval (a,b). Prove that there exists a < c < b such that $f'c) = \frac{f(b) f(a)}{b a}$. (4 Marks)

MAT 310/311E

Question Seven (13 Marks)

a) Prove that a monotonic function $f:[a,b]\to R$ on a compact interval is Riemann integrable. (8 Marks)

b) Suppose that $f,g:[a,b]\to R$ are integrable and $f\le g$. Prove that $\int_a^b f\le \int_a^b g$. (5 Marks)
