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Abstract
We illustrate the mechanism for the C–O, C–H and O–H bond activation in the coupling of ethanol to butanol over small 
coinage clusters (copper, silver and gold). It is found that charge transfer interactions between the clusters and the alcohol 
initiate their reactions allowing a chemisorption step. The binding energy is calculated, whereby ethanol adsorbs very strongly 
on Au in comparison to Ag and Cu. The nature of bonding is investigated using natural bond orbital (NBO) analysis and 
quantum theory of atoms-in-molecules (QTAIM). The reactive intermediates, activated complexes, transition states, and 
bond breaking on icosahedral Au13, Cu13, Ag13 and also triangular Au3, Cu3, Ag3 have been calculated alongside the cycle 
kinetics. Furthermore, high resolution mass spectroscopy has been used to study the ethanol coupling reactions over small 
Au cluster catalysts. The observation of the coupling products concurs with the kinetic- and thermodynamic- allowed reac-
tion pathway of Guerbet coupling of ethanol. The highest selectivity for butanol (61%) is obtained after a reaction time of 
2 h while the highest ethanol conversion (91%) is obtained after a reaction time of 5 h.

Keywords  Coinage Metal Cluster · Density functional theory · Guerbet Reaction · Catalytic conversion · Ethanol · Butanol

Introduction

Development of sustainable energy sources is a key goal 
of the research community [1]. The use of fossil fuels has 
various complex issues which are well-documented [2]. The 
merits of moving to a sustainable energy portfolio are clear 

[3]. Compared to gasoline, ethanol has many notable draw-
backs such low energy density, high water absorption and 
dilution problems in tanks [3]. However, there is a high simi-
larity in properties between butanol and gasoline which can 
be exploited. [3]. Among the interesting fuel properties of 
n-butanol include non-corrosivity, immiscibility with water, 
and high energy density (90% that of gasoline) [4]. However, 
butanol from biological raw materials remains a challenge 
[5]. A catalytically assisted conversion of ethanol to butanol 
(Guerbet reaction) is being considered as a viable alterna-
tive [6]. The Guerbet synthesis is named after the scientist 
Marcel Guerbet who studied the self-coupling of alcohols 
[2]. This reaction allows a primary or secondary alcohol to 
be condensed with itself or with another alcohol, thus to 
convert simple inexpensive feedstocks into more valuable 
products. While this appears to be a simple reaction, there 
are various challenges especially on the selectivity since the 
n-butanol formed can couple with higher alcohols [6]. A 
variety of catalysts has been applied in the conversion of 
ethanol to butanol. [7] For example, catalyst doped with Cu 
and Ni have recorded good catalytic activities with ethanol 
conversion and n-butanol yield of 56% and 22%, respectively 
[8]. Elsewhere, coupling reactions of methanol, ethanol and 
n-butanol at temperatures below 100 °C by unsupported 
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nano-porous Au catalysts has been studied, opening the door 
to a molecular-level understanding of the reaction [9].

It is worth noting that the over the last few years, research 
interests in cluster science of coinage metals is fast expand-
ing [10]. There are reports of successful synthesis of metal-
lic nanoclusters (NC) with monocrystalline structure con-
taining metal-to-metal bonds. On the other side [11], metal 
clusters in gaseous phase are best for studying properties 
of the metals. Generally, when the size of the metal cluster 
is small (n < 10), addition of extra atoms or electrons may 
result in unpredictable changes in its property with consider-
able dependence on size. [12]. This is clear indication that 
each atom plays an important role in the cluster [10]. Based 
on this, we have investigated the conversion of ethanol on 
typical coinage clusters. Using DFT calculations, we have 
firstly examined the structure chemistry, bonding and reac-
tion paths of the thirteen atom clusters (Ag13, Au13 and Cu13) 
and also the three atom clusters (Ag3, Au3 and Cu3). Inter-
estingly, Furthermore, we have studied the ethanol coupling 
reactions using high resolution mass spectroscopy over the 
small Au cluster catalysts, prepared by laser ablation method 
followed by careful separation techniques. The observed 
coupling products agrees with the kinetic- and thermody-
namic- allowed reaction pathways of Guerbet coupling of 
ethanol.

Computational and Experimental Methods

We used the GGA with the PBE exchange–correlation func-
tional that has been found to be suitable in describing the 
exchange and correlation effects [13–17]. Geometry optimi-
zations and energy calculations were done using DMol3 code 
[18, 19]. The double numerical plus p-functions (DNP) basis 
set was used [20]. The transition states were located using 
the synchronous method with conjugated gradient refine-
ments. This involve linear synchronous transit maximiza-
tion, followed by repeated conjugated gradient minimiza-
tions, and then quadratic synchronous transit maximizations 
and repeated minimizations until a transition state is located 
[21]. NBO analysis was done using Gaussian 09 [22], at 
B3LYP level of theory. The LanL2DZ and 6–31 + G(d) 
for the heavy (Cu, Ag, and Au) and representatively ele-
ments (H, C, O) respectively was specified. Multiwfn 3.7 
dev was used for the quantum theory of atoms-in-molecules 
(QTAIM) investigations and all other wavefunction analyses 
[23]. The respective cycle kinetics were modeled using the 
energetic span model [24, 25].

The experimental results were obtained using a modified 
container for laser ablation in liquid as reported in our previ-
ous reports [26, 27]. Pure gold clusters were obtained by laser 
ablation of gold in water [26, 27]. The ablation process was 
carried out in ultra-pure water and product solution filtered off. 

The obtained solution was concentrated to 5 ml. Afterwards, 
about 1 ml of absolute ethanol was added and the reaction 
allowed to proceed for 1,2,3,4 and 5 h at 70 ℃ prior to mass 
spectrometric analysis. Blank experiments were also carried 
out following the above described procedure but without add-
ing the as-prepared gold clusters.

Results and Discussion

The 13-atom metal clusters have special electronic configura-
tion [12, 13]. and therefore they are ideal systems for computa-
tional modelling as they possess exceptional stability and less 
site-selectivity especially in icosahedral or tetra-decahedral 
structured systems [28] For example, they have been used as 
models in the CO oxidation [14]. It has also been reported 
that in aqueous media Au13 clusters have good stability rela-
tive to other cluster sizes. Therefore, they can provide atom-
istic details of growth by cluster coalescence [29]. Figure 1 
shows a plot of the frontier orbitals and corresponding geom-
etry of Ag13, Au13 and Cu13 clusters. The HOMO does indi-
cate the Lewis acid sites while the LUMO, Lewis base sites 
[30–34]. It is seen that HOMO in Au13 cluster is generally 
at edge sites while LUMO is at the center of the cluster. For 
the case of Cu13, the HOMO is at the center while LUMO is 
at the edge sites. The frontier orbitals for Ag13, are located 
on different atoms at the edge. Table 1 presents a compari-
son of the HOMO and LUMO energies. Ag13 has relatively 
higher HOMO and LUMO energies compared to Au13 and 
Cu13. Also, Ag13 has also a higher HOMO–LUMO gap. From 
energy differences between the HOMOs of Au13/Ag13/Cu13 
and the LUMO of ethanol, it is expected that charge transfer 
occurs rendering reaction with CH3CH2OH. The global elec-
trophilicity indices, of Au13, Ag13, Cu13 and CH3CH2OH have 
also been examined [35–37]. The global reactivity descriptors 
(chemical potential μ , electronegativity χ , chemical hardness η , 
electrophilicity ω , and chemical softness S ) can be calculated 
using [38];

The global reactivity parameters of the studied com-
pounds are presented in Table 1. The calculated electron-
egativity and chemical hardness of ethanol is found to be 

(1)−μ = 1∕2
(

EHOMO + ELUMO

)

= χ

(2)η = 1∕2(IP − EA) =
ELUMO − EHOMO

2

(3)ω =
�2

2η

(4)S =
1

2η
=

1

IP − EA
=

1

ELUMO − EHOMO
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higher than that of Au13, Ag13 and Cu13 clusters (Table 1). 
Therefore, along a polar interaction, the net charge transfer 
exists, from ethanol to the clusters.

We have investigated the adsorption of CH3CH2OH on 
Ag13, Au13, Cu13 (Fig. 2). Among the binding energies, 
Au13 exhibits relatively higher value. Natural bond orbital 
(NBO) analysis was also carried out to get insights into the 
interactions between the Lewis type and non-Lewis type 

orbitals of the cluster-ethanol adducts. The interaction was 
expressed in terms of charge exchange and conjugative inter-
action between acceptor and donor orbitals together with 
charge delocalization (natural charge) [39, 40]. The NBO 
analysis was performed by considering the changes in the 
highest energy of interaction between donors and acceptor 
NBOs. As seen in Table 2, the highest stabilization ener-
gies for the Ag13-ethanol, Au13-ethanol, and Cu13-ethanol 

Fig. 1   Optimized structures and 
frontier orbitals of Ag13, Au13 
and Cu13

Table 1   Energies of the frontier 
molecular orbitals and the 
global electrophilicity indices

EHOMO (eV) ELUMO (eV) HOMO–
LUMO gap 
(eV)

η (eV) μ (eV) χ (eV) ω (eV)

Ag13 − 5.71 − 4.08 1.63 0.815 − 4.90 4.90 14.70
Au13 − 3.81 − 3.27 0.54 0.270 − 3.54 3.54 23.21
Cu13 − 4.76 − 4.69 0.07 0.035 − 4.72 4.72 318.94
CH3CH2OH − 7.08 − 4.62 2.46 1.23 − 5.85 5.85 13.91
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complexes are 504.82, 307.41 and 2215.21 kcal/mol obtained 
f o rLP∗(6)Ag11 → LP∗(8)Ag4  ,  LP(7)Au2 → LP∗(6)Au1 
and LP∗(7)Cu5 → LP∗(9)Cu2 donor–acceptor interacting 
NBOs, respectively. Furthermore, the specific energies of 
stabilization for the bond formation between the metal atom 
in the clusters and O-atom in ethanol were 14.60, 26.21, 
and 79.67  kcal/mol for theLP∗(8)Ag4 → σ∗Ag5 − O14 , 
LP(6)Au2 → σ∗Au5 − O14 , and LP(6)Cu2 → σ∗Cu5 − O14 
interacting NBOs, respectively. 

QTAIM was employed to investigate the electron ( � ) and 
laplacian ( ∇2� ) of the electron density of the metal–oxy-
gen bond formation along the bond critical path (BCP) 
[41]. The electron density at the BCP within the Ag5 − O14 , 
Au5 − O14 , and the Cu5 − O14 were 0.102, 0.085, and 0.111, 
respectively while the laplacian of the electron density were 

0.652, 0.443, and 0.862. Charge delocalization were also 
analysed. The NBO charge delocalization for the Ag5 − O14 , 
Au5 − O14 , and Cu5 − O14 were 0.138, 0.445, and 0.089 e 
for Ag, Au, and Cu atoms, respectively and -0.776, -0.808, 
and -0.754 e for O-atoms bonded to the Ag, Au, and Cu, 
respectively.

Previous reports show that the Guerbet reaction proceeds 
through an aldol-type intermediate, whereby the reactant 
alcohol(s) is first dehydrogenated [42]. Aldol-type cou-
pling followed by dehydration and hydrogenation produces 
the Guerbet saturated alcohol product [42, 43]. Moreover, 
we analysed the reaction coordinates of the clusters with 
C2H6O as shown in Fig. 3. The adsorption of the two etha-
nol molecules is an exothermic process, with Au13 show-
ing the highest adsorption energy (− 3.14 eV) compared 
to Cu13 (− 1.75 eV) and Ag13 (− 2.13 eV). It is also clear 
that the activation of the ethanol molecule is an exothermic 
process, with activation barriers for the transfer of H atom 
to the clusters below 0.1 eV. The ‘Cu13 + (C2H6O)2

’ reaction 
pathway has a relatively lower transition state energy bar-
rier (0.02 eV). Then, the carbon atom on C2H5O attaches on 
to the carbon of C2H6O leading to formation of C4H9OH, 
with the intermediate steps having energies of − 2.89 eV, 
− 3.22 and − 1.77 eV for Ag13, Au13 and Cu13 pathways, 
respectively. It was observed that each step of this pathway 
is thermodynamically favourable. To understand the path-
way better, the energetic span model was used to evaluate 
its energy profile [24, 25]. The span model uses energy rep-
resentations of different states of the cycle to generate the 
turnover frequency (TOF) [24, 25]. The TOF of a catalytic 
cycle is dependent on the TOF-determining intermediate 

Table 2   The computed 
results for the second-order 
perturbation energy analysis. 
The atom numbers are indicated 
by the inserts

S/No. Donor Acceptor E2/(kcal/mol) Ej − Ei (Fi, j)

(a) Ag13-C2H5OH
 1 LP(6)Ag

11
LP∗(8)Ag

4
504.82 0.02 0.133

 2 LP∗(6)Ag
13

LP∗(8)Ag
5

465.76 0.01 0.097
 3 LP(6)Ag

7
LP∗(8)Ag

9
381.44 0.03 0.148

 4 LP∗(6)Ag
12

LP∗(7)Ag
4

319.68 0.04 0.158
 5 LP(6)Ag

11
LP∗(8)Ag

12
250.39 0.03 0.132

(b) Au13-C2H5OH
 1 LP(7)Au

2
LP∗(6)Au

1
307.41 0.06 0.141

 2 LP(7)Au
2

LP∗(6)Au
4

276.90 0.06 0.133
 3 LP(6)Au

2
LP(6)Au

7
252.46 0.04 0.100

 4 LP∗(6)Au
5

LP∗(9)Au
2

238.43 0.20 0.311
 5 LP∗(8)Au

2
LP(6)Au

8
210.31 0.07 0.124

(c) Cu13-C2H5OH
 1 LP∗(6)Cu

8
LP∗(6)Cu

12
2215.21 0.02 0.276

 2 LP∗(6)Cu
11

LP∗(6)Cu
3

1859.32 0.01 0.214
 3 LP∗(6)Cu

7
LP∗(6)Cu

1
1494.82 0.01 0.203

 4 LP(6)Cu
9

LP∗(6)Cu
4

1221.90 0.03 0.222
 5 LP∗(6)Cu

12
LP∗(6)Cu

3
1556.28 0.01 0.184

Fig. 2   Optimized structures of; a Ag13–CH3CH2OH, b Au13–
CH3CH2OH, c Cu13–CH3CH2OH, alongside their respective binding 
energies
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(TDI), and the TOF-determining transition state (TDTS) of 
the cycle [44]. The initial transition state, represented by the 
transfer of H atom from ethanol to the Ti cluster (TS1), is 
the maximum free-energy of the entire catalytic cycle [45]. 
Because TDI comes after TS1, then the energy span can is 
given by equation.

�E = T(TDTS) − I(TDI) + ΔGrx,

 where ΔGrx is change in the free energy. It is seen that the 
calculated TOFs for Cu13, Au13 and Ag13 pathways are 0.5, 
0.36 and 1.04 respectively.

In comparison, we have also considered the triangular 
structures of Cu3, Ag3 and Au3. The frontier orbitals and 
corresponding geometry of Ag3, Au3 and Cu3 clusters are 
shown in Fig. 4. The LUMO are generally at edge sites while 
the HOMO are at the center. The reaction coordinates of 

Fig. 3   The reaction coordi-
nates of ‘Au13 + (C2H6O)2’, 
‘Ag13 + (C2H6O)2’ and 
‘Cu13 + (C2H6O)2’ in the cou-
pling of C2H6O to C4H9OH
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the triangular three atom clusters with C2H6O are given in 
Fig. 5. According to the energy profile, the adsorption of the 
two ethanol molecules is also exothermic, with Au3 having 
the highest adsorption energy (− 1.93 eV) compared to Cu3 
(− 1.90 eV) and Ag3 (− 1.25 eV). It is also clear that the 
activation of the ethanol molecule is an exothermic process, 
with transition state energy barriers for the transfer of H 
atom to the metal clusters ranging between 1.01 and 1.11 eV, 
which are relatively higher compared with those of the 13 
atom clusters (0.02–0.06 eV. Then, the C atom on the car-
bonyl group attaches on to the carbon of C2H6O leading to 
formation of C4H9OH, with the intermediate steps having 
energies of − 1.20, − 1.11 and − 2.99 eV for Ag3, Au3 and 
Cu3 pathways, respectively. Then H on the cluster binds to 
the –OH group, leading to the formation of H2O. It is also 
seen that every elementary step of this pathway is thermo-
dynamically favourable. These results agree with published 
literature reports on how gas phase metal clusters are excel-
lent models for investigating the reaction mechanisms [10].

Having examined the binding and reaction of ethanol on 
typical coinage clusters, it is highly desirable to experimen-
tally verify these findings. Fortunately, we synthesized and 

Fig. 5   The reaction coordi-
nates of ‘Ag3 + (C2H6O)2’, 
‘Au3 + (C2H6O)2’ and 
‘Cu3 + (C2H6O)2’ in the cou-
pling of C2H6O to C4H9OH

Fig. 4   Optimized structures and frontier orbitals of Ag3, Au3 and Cu3
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characterized chemically pure gold clusters by laser ablation 
in water [26, 27]. Figure 6, shows the mass spectra of etha-
nol, and the products after reacting with the chemically pure 

gold clusters. From the results, ethanol was converted to 
butanol. No coupling was observed in the blank experiment 
(Fig. 6c). Figure S1 also shows the mass spectra of ethanol 
before and after reacting with the gold clusters at various 
reaction times, whereby the products vary with the reaction 
duration. Figure 7 summarizes the catalytic performance of 
the Au clusters for ethanol conversion under different reac-
tion times. The highest selectivity for butanol (61%) was 
obtained after a reaction time of 2 h while the highest etha-
nol conversion (91%) was obtained after a reaction time of 
5 h. Similar findings have been reported fort gold and silver 
clusters as efficient models for catalytic reactions [46–51].

Conclusion

This study investigated the Guerbert reaction of ethanol to 
butanol on typical coinage clusters (i.e., copper, silver and 
gold). Using DFT calculations, we have examined the struc-
ture chemistry, bonding and reaction paths of the thirteen 
atom clusters and also the three atom clusters. Interestingly, 
Au allows for a slightly larger binding energy with ethanol. 
Furthermore, we have studied the ethanol coupling reac-
tions using high resolution mass spectroscopy over the small 
Au cluster catalysts, prepared by laser ablation method fol-
lowed by careful separation techniques. The observed cou-
pling products agrees with the kinetic- and thermodynamic- 
allowed reaction pathways of Guerbet coupling of ethanol. 
The highest selectivity for butanol (61%) is obtained after 
a reaction time of 2 h while the highest ethanol conversion 
(91%) is obtained after a reaction time of 5 h.

Fig. 6   ESI–MS spectra of: (upper) pure ethanol, (middle) ethanol 
after reaction with the Au clusters for 4  h at 70  °C (c) reaction of 
ethanol at 70 °C for 4 h in the absence of Au clusters, as an exclusion 
experiment

Fig. 7   Catalytic performance of 
the Au clusters for ethanol con-
version under different reaction 
times; (left) product selectivity, 
(right) ethanol conversion
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