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Abstract
Background

With the increased availability of access to prenatal ultrasound in low/middle-income countries, there is opportunity to better
characterize the association between fetal growth and birth weight across global settings. This is important, as fetal growth curves
and birthweight charts are often used as proxy health indicators. As part of a randomized control trial, in which ultrasonography
was utilized to establish accurate gestational age of pregnancies, we explored the association between gestational age and
birthweight among a cohort in Western Kenya, then compared our results to data reported by the INTERGROWTH-21st study.

Methods

This study was conducted in 8 geographical clusters across 3 counties in Western Kenya. Eligible subjects were nulliparous
women carrying singleton pregnancies. An early ultrasound was performed between 6 + 0/7 and 13 + 6/7 weeks gestational age. At
birth, infants were weighed on platform scales provided either by the study team (community births), or the Government of Kenya
(public health facilities). The 10th, 25th, median, 75th, and 90th BW percentiles for 36 to 42 weeks gestation were determined;
resulting percentile points were plotted, and curves determined using a cubic spline technique. A signed rank test was used to
quantify the comparison of the percentiles generated in the rural Kenyan sample with those of the INTERGROWTH-21st study.

Results

A total of 1291 infants (of 1408 pregnant women randomized) were included. Ninety-three infants did not have a measured birth
weight. The majority of these were due to miscarriage (n = 49) or stillbirth (n = 27). No significant differences were found between
subjects who were lost to follow-up. Signed rank comparisons of the observed median of the Western Kenya data at 10th, 50th,
and 90th birthweight percentiles, as compared to medians reported in the INTERGROWTH-21st distributions, revealed close
alignment between the two datasets, with significant differences at 36 and 37 weeks. Limitations of the current study include small
sample size, and detection of potential digit preference bias.

Conclusions

A comparison of birthweight percentiles by gestational age estimation, among a sample of infants from rural Kenya, revealed
slight differences as compared to those from an urban setting in the same geographical setting (INTERGROWTH-21st ).

Trial registration : This is a single site sub-study of data collected in conjunction with the Aspirin Supplementation for Pregnancy
Indicated Risk Reduction In Nulliparas (ASPIRIN) Trial, which is listed at ClinicalTrials.gov, NCT02409680 (07/04/2015)

Background
Pediatricians, obstetricians, and public health workers have become accustomed to using fetal growth curves to assess risk for
perinatal morbidity and mortality. The widespread use of obstetrical ultrasound early in gestation, particularly within high-income
settings, has allowed very accurate and precise estimation of gestational age [1, 2]. Coupled with equally accurate and precise
measurements of birth weights, investigators have been able to construct highly accurate fetal growth curves, such as those by
WHO [3], Fenton et al [4], and INTERGROWTH-21st [5, 6].

While early prenatal ultrasound is common in high resource countries, it is less common or even nonexistent in low resource
settings. This has made the development of fetal growth curves difficult in these settings. Growing access to low-cost ultrasound
(US) devices in these settings may begin to increase access to antenatal sonography for populations in low-to-middle income
countries [7, 8]. Fetal growth curves are used to categorize infant gestational age and quality of intrauterine growth, which is vitally
important for clinical care of the newborn, as well as for evaluating the impact of public health programs and pregnancy
interventions, such as those related to maternal nutrition [9]. However, one challenge is that one cannot merely assume the growth
curves or birthweight charts in one global region may be applicable in another region. For example, there are well known
differences in birth weight distributions between Africa and Asia [10]. There is some evidence that customizing fetal growth curves
for particular populations may result in higher sensitivity and specificity to determine small-for-gestational and low birthweight
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neonatal outcomes, as compared to using broad based population charts across more heterogenous regions [11]. Detecting these
differences via use of ultrasound data, as compared to other methods, such as fundal height, improves accuracy, particularly in
regards to stratifying risk for neonatal mortality [12] [13]. Therefore, it is crucial that each global region has population specific
fetal growth curves for accurate classification of infants by birth weight within that region.

The Global Network for Women’s and Children’s Health Research recently completed a multi-site global clinical trial of low dose
aspirin administered to women throughout pregnancy, beginning between 6–14 weeks gestation [14]. To assure women met the
gestational age requirements for the study, all participants received an ultrasound prior to study entry. Therefore, a cohort of
women resulted who had all undergone gestational age assessment prior to 14 weeks of pregnancy. Women were followed
throughout pregnancy, and birthweights of resulting infants obtained as soon as possible after birth. With this cohort of accurate
gestational age and birthweight data, we have generated estimated fetal growth curves for the Kenya site. There is evidence that
customized birthweight cohort data may be more accurate for detecting fetal growth restriction related to placental dysfunction –
an important hypothesized contributor to premature birth -- as compared to utilizing population-based birthweight information. [15]

One of the largest, most comprehensive set of studies on multinational birth weight are those of the INTERGROWTH-21st trial [16]
[17]. These studies were specifically designed to generate accurate, longitudinal, and multinational fetal and childhood
anthropometric measurements. INTERGROWTH-21st subjects were recruited from eight countries, including from the environs of
Nairobi, Kenya.

Methods
The data presented in this paper were acquired at the Kenya site as part of the Global Network for Women’s and Children’s Health
Research ASPIRIN trial. Detailed study methods are described in Hoffman et al. [14, 18]. The Kenyan site (Fig. 1) is situated within
the malaria holoendemic Lake region of Western Kenya, specifically the counties of Busia, Kakamega, and Bungoma [19]. The
eight geographical clusters within the Kenyan site are served by over 20 health facilities, most operated by the government and
staffed by nurse-midwives, clinical officers, and a single medical officer. Three hospitals in the area function as county referral
hospitals [20]. There is one tertiary teaching and referral hospital based in Eldoret for the western region with a newly established
training program in maternal fetal medicine. Most physicians are generalists, with some trained obstetricians and pediatricians[20].

Eligible subjects were pregnant nulliparous women carrying singleton pregnancies. An early ultrasound was performed between 6 
+ 0/7 and 13 + 6/7 weeks gestational age for accurate pregnancy dating. From this ultrasound, the estimated day of delivery was
determined using the ACOG algorithm [21, 22], which was programed onto a handheld android device. Eligible women were then
randomized 1:1 to a daily regimen of low dose aspirin or placebo and followed to 42 days post pregnancy completion.

Infants born to subjects were weighed on platform scales either at a delivery health facility, or if born outside of a facility, at the
home of the local village elder [23]. For infants delivered at participating public health facilities, the weighing scales used were
those provided by the Government of Kenya; our study team did not have control over the make or model of infant weighing scales
utilized. The weights of infants born within the community-setting, and weighed by village elders, were obtained using scales
(Perlong Medical Equipment Co., Ltd.RGZ-20 Nanjing, China) provided by our research team. Only infants with a measured birth
weight (BW) were included in this analysis.

For subjects experiencing either a stillbirth or an infant death before the 42-day follow-up period, the assumed cause of death was
determined using a previously published algorithm [24, 25]. Estimated gestational age (EGA) in days at time of delivery or stillbirth
was defined as (Date of delivery – Estimated Date of Delivery by ultrasound) + 280. EGA in weeks was defined as EGA Days/7.
Completed weeks of gestation was calculated by rounding the EGA weeks to the next larger integer.

Statistical analyses were performed using JMP software and SAS version 9.4 (SAS Inc, Cary, NC USA). The 10th, 25th, median,
75th, and 90th BW percentiles for 36 and 43 completed weeks gestation were determined, the resulting percentile points were
plotted, and curves determined using a cubic spline technique. Percentile curves for gestational ages less than 36 weeks (n = 57) or
greater than 43 weeks (n = 9) were not plotted due to paucity of data for these groups.
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A signed rank test was used to quantify the comparison of the percentiles generated in this study with those of the
INTERGROWTH-21st study. This test was performed twice within each gestational week – once testing the null hypothesis that the
Kenya median equals the reported median of the INTERGROWTH-21st Male data, and once testing the null hypothesis that the
Kenya median equals the reported median of the INTERGROWTH-21st Female data. This analysis was non-directional and
performed at the alpha = 0.05 significance level.

Results
The consort diagram is shown in Fig. 2; 1408 women were randomized. Twenty-two did not have delivery gestational age data and
are considered lost to follow-up (LTFU), and 93 infants did not have a measured birth weight. Miscarriages accounted for the
majority (49) of the subjects with missing measured BW. Twenty-seven stillbirths, 5 infant deaths, and 12 survivors lacked
measured birth weights. Two additional infants were excluded because of highly unlikely birth weight/gestational age
combinations. Therefore, 1291 infants were included in the final data set.

Table 1 shows maternal age and gestational age at study entry for each excluded group and the final analysis group. No
significant differences were found between subjects who were lost to measured birth weight, or included in the final data set.

 
Table 1

– Maternal age (years) and gestational age (weeks) at study entry

  All (1408)

Mean

SD LTFU

(22)

Mean

SD No BW

(93)

Mean

SD BW

(1291)

mean

SD p

Maternal Age 20.1 3.0 19.8 2.8 19.7 3.0 20.1 3.0 NS*

GA at Entry 10.4 2.1 10.9 2.2 10.2 2.1 10.4 2.1 NS*

*NS p < 0.05

Table 1 -- Maternal age (years) and gestational age (weeks) at study entry, for all randomized, those lost to follow-up, those with no
measured birth weight, and those with a measured birth weight; these constituted the final analysis group. N for each group is in
parentheses.

The majority of subjects (n = 1081) delivered in a health facility, while 210 delivered at home. Deliveries were conducted primarily
by nurse-midwives (1103); 106 deliveries were conducted by Traditional Birth Attendants, 33 by either self or a family member, and
49 by a physician. The vast majority of birth weights were obtained on day of life (DOL) 0 (91%); 98% were obtained within DOL 0–
3.

Figure 3 shows the birth weight distribution. A normal distribution model is projected onto the histogram. The histogram shows
evidence of digit preference in the recording of birth weights, which affected the Anderson-Darling Goodness of Fit of the normal
distribution model (<.001). It is also possible that the normal distribution model was rejected due to the limited precision of the
data, resulting in a large number of tied data points. [26]Figure 3 -- Histogram of measured birth weights. A fitted normal
distribution curve is projected onto the actual data.

Figure 4 depicts a scatterplot of gestational age and measured birth weight, with a cubic spline line fitted to the data. Deaths (n = 
32, 2.5%), either stillbirth or infant death, are plotted in red, whereas survivors are plotted in black. Causes of death for the live born
infants (n = 19) were primarily asphyxia (n = 10) followed by prematurity (n = 3), infection (n = 4), congenital anomalies (n = 1) and
unknown (n = 1). Stillbirths (n = 13) were primarily due to asphyxia (n = 10), followed by infection (n = 2) and unknown (n = 1)

The 10th, 25th, 50th, 75th, and 90th birth weight percentiles for 36–43 completed weeks of gestation are shown in Table 2. The
data points for these percentiles are plotted as curves onto the birth weight:gestational age actual data for all observed completed
weeks of gestation in Fig. 5.
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Table 2

– Birth weight (g) percentiles by completed weeks of gestation, 36–43 weeks gestation
Gestational age n p10 p25 median p75 p90

36 35 2300 2500 2700 3100 3200

37 82 2400 2800 3000 3200 3500

38 203 2700 2900 3000 3300 3500

39 356 2700 3000 3200 3450 3700

40 317 2800 3000 3200 3500 3800

41 162 2900 3000 3300 3500 4000

42 55 2800 3200 3500 3600 3800

43 15 2900 3000 3200 3500 4000

Note: Percentiles for completed weeks of gestation less than 36 or greater than 43 have been excluded due to paucity of data in
each week.

Table 3 shows the 10th, 50th, and 90th percentiles for birth weight for the present study and for the INTERGROWTH-21st study; p-
values for the signed rank test comparison of medians are also reported in this table.

 
Table 3

Birthweight Percentiles by Gestational Age for Rural Kenya and INTERGROWTH-21st

  Kenya INTERGROWTH-21st[5]

  Males and Females Males Females

Week n 10th 50th 90th n 10th 50th 90th p-
value

n 10th 50th 90th p-
value

36 35 2300 2700 3200 323 2180 2690 3250 0.1228 293 2140 2600 3120 0.0119

37 82 2400 3000 3500 857 2380 2890 3450 0.0101 803 2330 2800 3320 0.0001

38 203 2700 3000 3500 2045 2570 3070 3630 0.5536 1802 2500 2970 3510 0.0000

39 356 2700 3200 3700 3009 2730 3240 3790 0.0166 2869 2650 3130 3660 0.0213

40 317 2800 3200 3800 2568 2880 3380 3940 0.0000 2523 2780 3260 3800 0.2174

41 162 2900 3300 4000 1179 3010 3510 4060 0.0000 1195 2890 3370 3920 0.0286

42 55 2800 3500 3800 206 3120 3620 4170 0.0000 224 2980 3460 4010 0.1789

Note: Weeks are completed weeks of gestation, INTERGROWTH-21st data have been converted from kg to g, and reported p-
values represent a signed rank comparison of whether the observed median of the rural Kenya data differs from a
hypothesized median value based on the medians reported in the INTERGROWTH-21st distributions. INTERGROWTH-21st data
for 43 completed weeks of gestation were not available.

Discussion
Our data complements that reported by INTERGROWTH-21st, in that our Kenyan subjects were recruited from a rural agricultural
setting with a significant malaria burden, whereas the Kenyan subjects in the INTERGROWTH-21st trial were recruited from the
Parkland area of suburban Nairobi. Parklands is considered a middle to upper socioeconomic urban area, while the area of our
study is largely defined as

a World Bank rural poverty area. Thus, our population demographics are considerably different than those of the Kenyan subjects
included in the INTERGROWTH-21st study. Despite these in-country geographical variations, our results, from rural Western Kenya,
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are quite similar to those reported for INTERGROWTH-21st .

The incidence of prematurity and low birth weight are important public health indicators for a population. However, it is known that
the birth weight distribution curve varies among populations. In addition, despite extensive study, it has been challenging for
clinicians and public health practitioners to find accurate prenatal surrogate markers that correlate reliably with actual
birthweight[27] [28] [13]. Reasons may include genetics, environmental factors, and average maternal nutritional status. As
evidenced by the Dutch famine in World War II, birth weight can clearly be adversely affected by the general population nutrition
level and access to adequate food [29, 30].

Birth weight and gestational age are intertwined, and it is crucial in evaluating a population to be able to separate low birth weight
due to prematurity and low birth weight due to fetal factors, either constitutional or nutritional. Therefore, fetal growth curves with
accurate birth weights are important tools for evaluating public health and interventions designed to reduce rates of stillbirth [31]
[32], premature birth, low birthweight, and neonatal mortality[33] ). However, accurate and precise estimation of gestational age is
difficult, and generally only attained either in an in vitro fertilization or by means of an early (less than 14 weeks) fetal ultrasound
capable of making accurate anthropometric measurements. While these ultrasounds have become commonplace in high resource
countries, they are less common or completely inaccessible in low resource settings, where global rates of neonatal morbidity and
mortality are highest, and where increased exposure to infectious and non-infectious diseases [34] [35], deleterious environmental
exposures [36], poor access to early and comprehensive antenatal care [37] [38], and/or sub-optimal maternal nutritional factors
[39] [40] [41] are likely to have the greatest impact on fetal growth. The data presented in this study represent pregnancies for
which all acquired gestational dating, via obstetric ultrasonography, at less than 14 weeks.

The INTERGROWTH-21st study found that for most gestational weeks, median birthweights differed for Male and Female infants.
Our data were pooled across male and female neonates. The signed rank test used for this analysis was limited by sample size
disparities and the use of pooled vs. segregated data. Although this analysis had limitations and was based on a single metric
(median), the observed significant differences at gestational age weeks 36, 37, and 39 warrant further investigation in the rural,
Western Kenyan population. A major strength of our cohort is the data originated from a prospectively designed study. Subjects
were enrolled early in pregnancy as part of the ASPIRIN trial, and tracked prospectively through delivery to 42 days postpartum, as
part of our established, population-based maternal newborn health registry, which employs rigorous quality assurance procedures
[42]. This design ensured that, as much as possible, all pregnancies were tracked, not just those enrolling late in gestation or even
after delivery. In retrospective studies, stillbirths and miscarriages are the most likely type of fetal/early neonatal deaths to be
missed, thereby skewing the data towards a heavier birthweight distribution. In the present study, another strength was our very low
loss-to-follow up rate; we lost only 22 subjects (1.56%) to follow-up before birth. Another key strength is the rigorous quality-
assurance standards that were utilized to train, monitor, and evaluate the sonographers in this study [43] [44]. The US devices that
we utilized (GE LOGIQ e systems using wide-band (2.0-5.5 MHz) convex array transducers (GE Healthcare, Milwaukee, WI) are of
high quality, providing additional confidence in regards to the accuracy of fetal growth measurements that were obtained among
our cohort.

There are several limitations of our study. First, the sample size is relatively small, especially for infants born below 36 weeks and
of less than 2500 grams. Furthermore, we used data only from women who had qualified for and enrolled in the ASPIRIN study, as
these women all had accurate ultrasound gestational dating. This limited our subjects to primagravidas, and to singleton
pregnancies, consistent with the ASPIRIN eligibility requirements. It is well established that multiple gestation pregnancies are more
likely to result in low birthweight infants. Birth spacing can also impact the birthweights of subsequently born sibling infants, as
compared to first born infants [45] .

Similar to challenges faced by other groups (e.g., EN-INDEPTH; Blencowe, et al., 2021) [46] another significant limitation in our
study is the lack of birth weight data for many stillbirths and early neonatal deaths. In general, it can be difficult, within the sub-
Saharan setting, to obtain accurate birthweight data for very low birthweight infants (e.g., below 1500 grams). This is especially
problematic for estimating mortality risk of infants less than these parameters. We made strenuous efforts to obtain these data,
but cultural practices and a deep stigma related to stillbirth limited our ability to do so [47] [48]. It is the cultural practice in our
study population to immediately inter stillbirths and neonatal deaths, making it nearly impossible to obtain birth weight data on
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this subset of the population [48]. Depending on the actual birth weights of these subjects, however, it is possible that their loss did
skew our data.

As mentioned previously, we had a very low loss-to-follow-up rate, overall. However, an additional 93 subjects, while not lost to
follow-up, did not have measured birth weights. Of these, 49 pregnancies ended before 20 weeks and were considered
miscarriages. Of the remaining subjects, 27 were stillbirths, 5 were neonatal deaths, and 12 had unknown status. A final challenge
faced in this study is the limited precision of the scales used to determine birth weights. In general, these scales were graduated at
50-gram increments. Combined with documented “digit preference” bias from other settings, including within the East African
region [49] [50], and for which there might be some anecdotal evidence within our Network [10], this lack of granularity in regards to
birthweight measurements limits the interpretation of our results.

Conclusions
Premature birth continues to be a major problem in sub-Saharan Africa, including Kenya. The comparison of our data, with
INTERGROWTH-21st results, found preliminary signals that this rural-dwelling population may have birthweight by gestational age
percentiles that differ from that currently reported in global data sources. These results further indicate that continued efforts by
clinicians and public health practitioners are needed to develop timely, accurate, effective, acceptable, and feasible evidence-based
methods to accurately detect and predict regionally-specific rates of fetal growth restriction and low birthweight [51] [52] [15].
Within low/middle-income settings, this will be an important contribution toward on-going global efforts to reduce overall rates of
neonatal mortality [53] [54].
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Figures

Figure 1

Map of the study region, located in Busia, Bungoma, and Kakamega counties of western Kenya. Study clusters are outlined in
gray.  County locations within Kenya are depicted in the inset map.
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Figure 2

Consort Diagram

Figure 3

Histogram of measured birth weights. A fitted normal distribution curve is projected onto the actual data.
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Figure 4

Scatterplot of Measured Birth Weight (y axis) and gestational age (x axis). A cubic spline was fitted and plotted onto the data. Red
points indicate either a fetal or neonatal death.

Figure 5

Birth weight percentile curves are plotted against actual data. Only percentiles for 36—43 weeks are plotted due to paucity of data
in the other completed weeks of gestation. Red points indicate either a fetal or neonatal death.


