

P. O.Box 845-50400 Busia(K)

principal@auc.ac.ke Tel: +254 741 217 185 +254 736 044 469

off Busia-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021 /2022 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE CS/ASC

COURSE CODE:

MAT 110

COURSE TITLE:

BASIC CALCULUS

DATE: 20th JANUARY, 2022

TIME: 2:00-5:00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 110: BASIC CALCULUS

STREAM: BSc (CS&ASC)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- ii. Do not write on the question paper.

SECTION A (31 marks)

QUESTION ONE (15 Marks)

- (a) Given that $f(x) = x^2 1$ and g(x) = 3x + 5 find $f \circ g(x)$ and its domain (3Marks)
- (b) Evaluate the following limits

(i)
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 1}}{2x + 3}$$
 (3 Marks)

(ii)
$$\lim_{x \to \frac{3}{2}} \frac{4x^2 - 9}{2x - 3}$$
 (3 Marks)

(iii)
$$\lim_{x \to 0} \frac{\tan x}{x}$$
 (2 Marks)

- (c) Find the area of the region bounded by the curve $y = x^2 4$, the x axis and the lines x = 1 and x = 3 (2 Marks)
- (d) Determine the derivative of $y = e^{4x}$ (2 Marks)

QUESTION TWO (16 Marks)

(a) Use the definition of the derivative to determine the derivative of $f(x) = x^2$ (2 Marks)

(b) Find
$$\frac{dy}{dx}$$
 if $x = t^3 - t$ and $y = 4 - t^2$ (3 Marks)

(c) Given that
$$2x^3 - 3y^2 = 8$$
. Compute $\frac{d^2y}{dx^2}$ (5 Marks)

(d) Determine whether the function g defined by

$$g(x) = \begin{cases} 3+x & if & x \le 1 \\ 3-x & if & x > 1 \end{cases}$$

Is continuous at the point x = 1

e) Prove that $\lim_{x \to 4} 3x - 5 = 7$

(3 Marks)

(2 Marks)

SECTION B (39 MARKS)

QUESTION THREE (13 Marks)

(a) Determine the derivative of $y = x^3 \ln(2x+5)$

(5 Marks)

(b) Show that $\frac{d(a^x)}{dx} = a^x \ln a$

(4 Marks)

(c) Find the derivative of the function $y = x^x$

(4 Marks)

QUESTION FOUR (13 Marks)

(a) Show that $\lim_{x\to 2} \frac{x^2 - 4}{x - 2} = 4$

(4 Marks)

(b) Compute $\frac{dy}{dx}$ for $y = \sin\left(\frac{2x}{x+1}\right)$

(3 Marks)

(c) Compute the following limits

(i) $\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$

(3 Marks)

(ii) $\lim_{x \to 9} \frac{2\sqrt{x} - 6}{x - 9}$

(3 Marks)

QUESTION FIVE (13 Marks)

(a) Differentiate from first principles the function $f(x) = \frac{x}{x-1}$

(5Marks)

(b) Find the derivative of $y = e^{-x} \sin 3x$

(c) Show that the derivative of $\sec x$ is $\sec x \tan x$ (3Marks)

(5Marks)

QUESTION SIX (13 Marks)

- (a) Find the derivative with respect to x of $x^3y + 2y^4 x^4 = 0$ at the point (1,2). (4 Marks)
- (b) Determine the second derivative with respect to x of $x = t^2$ and $y = t^3$ (5 Marks)
- (c) Determine the derivative of $y = \ln(2x+5)(x^3-3)$ at the point x=1 (4 Marks)

QUESTION SEVEN (13 Marks)

- (a) A tank is in the form of an inverted cone having an altitude of 16 ft and a base of radius 4 ft. Water is flowing into the tank at the rate of $2 ft^3 / min$. How fast is the water level rising when the water is 5 ft deep? (5 Marks)
- (b) Find the area of the Largest rectangle having a perimeter of 200 ft (4 Marks)
- (c) Find an equation of the line tangent to the curve $16x^4 + y^4 = 32$ at the point (1,2). (4 Marks)