

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel; +254 741 217 185 +254 736 044 469 off Busia-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021 /2022 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS

COURSE CODE:

MAT 104e

COURSE TITLE:

BASIC MATHEMATICS AND

ANALYTIC GEOMETRY

DATE: 20th JANUARY 2022

TIME: 9:00AM-12:00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 104e: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

STREAM: BED DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- ii. Do not write on the question paper.

SECTION A (31 marks)

QESTION ONE (16 MARKS)

a) Define the following terms [2mks] Conic i. ii. combination b) solve the equation $sin\theta = -\frac{1}{2}$ for values from -180° to 180° [2mks] c) Using an appropriate triangle show that $\cos^2 x + \sin^2 x = 1$ [3mks] d) State and prove the t-formulae for sinx [3mks] e) Change the equation $r^2 = a^2 \cos 2\theta$ into Cartesian coordinates [2mks] f) Convert the following polar coordinates to the Cartesian system $(2, 120^0)$ [2mks] g) Show that the circles $x^2 + y^2 - 6x + 4y + 2 = 0$ and $x^2 + y^2 + 8x + 2y - 22 = 0$

[2mks]

QESTION TWO (15 MARKS)

are orthogonal

a)	Find the tangents common to $x^2 + y^2 = 8$ and $y^2 = 16x$	[4mks]
b)	Show that $Tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$	[3mks]
c)	A committee of 6 is to be formed from a group of seven engineers and four	
	mathematicians. How many different committees can be formed if at most 3	
	mathematicians are always to be included	[3mks]
d)	State and prove the cosine rule	[3mks]
e)	If $y = sh^{-1}(\frac{3}{4})$ show that $shy + chy = 2$	[2mks]

SECTION B: ANSWER ANY THREE QUESTIONS IT CARRIES EQUAL MARKS

QUESTION THREE (13 MARKS)

- a) Solve the following quadratic equation by factorization method $2x^2 + 3x + 1 = 0$ [4mks]
- b) Using parametric representation find the equation of the tangent and the normal at the point T on $y^2 = 4px$ [3mks]
- Show that shAchB + chAshB = sh(A + B) [3mks]
- d) Solve $3\cos\theta + 4\sin\theta = 2$ for values of θ from 0° to 180° [3mks]

QUESTION FOUR (13MARKS)

- a) State the vertex and focus of the parabola having the equation; $(y-3)^2 = 8(x-5)$ [4mks]
- b) Prove from the definition that $4 \text{sh}^3 x = \text{sh} 3x 3 \text{sh} x$ [4mks]
- c) Prove that y = 2x + 2 touches $y^2 = 16x$ [5mks]

QUESTION FIVE (13MARKS)

- a) Find the distance from the point (1,4) to the line 3x 5y + 2 = 0 [3mks]
- b) Obtain the acute angle between x y + 1 = 0 and x + 5y + 1 = 0 [3mks]
- c) Find the vertex, focus, axis and directrix of the following parabola [3mks]

$$x^2 - 4x - 8y + 28 = 0$$

d) Solve the equation $3\cos 2\theta + \sin \theta = 1$ for values of θ from 0° to 180° [4mks]

QUESTION SIX (13MARKS)

- a) Using the remainder theorem factorize the expression $2x^3 + 3x^2 32x + 15$ [3mks]
- b) Find the equation of a circle through points (1,5) (-2,3) (2,-1) [6mks]
- Consider a curve $y = x^2 + 2x + 6$ find the equation of the tangent at x = 0 and the normal line [4mks]

QUESTION SEVEN (13MARKS)

- a) Find the slope of the line bisecting the angle from L_1 with slope 7 to L_2 with slope 1 [4mks]
- b) In triangle PQR, r = 5.75 and the sizes of angle P and Q are 42° and 65° respectively calculate the lengths of the remaining sides [3mks]
- c) Using the standard formulae of a circle show the gradient at the point where tangent meets the circle is $-(\frac{x_1+g}{y_1+f})$ [4mks]
- d) Calculate the length of the tangent from the point (10,3) to the circle $2x^2 + 2y^2 4x + 8y 2 = 0$ [2mks]