

ALUPE UNIVERSITY

P. O.Box 845-50400 Busia(K)

principal@auc.ac.ke
Tel; +254 741 217 185
+254 736 044 469

off Busia-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2021 /2022 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE:

COM 113

COURSE TITLE:

MATHEMATICS FOR COMPUTER SCIENCE I

DATE: 19TH JANNUARY, 2022

TIME: 1400 - 1700 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

COM 113

REGULAR-MAIN EXAM

COM 113: MATHEMATICS FOR COMPUTER SCIENCE I

STREAM: COM	DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and any THREE from section B.

SECTION A (24 MARKS)

Question One (12 Marks)

a) Define the following terms

[5 Marks]

- i) A set
- ii) Empty set
- iii) Universal set
- iv) Disjoint set
- v) Cardinality of a set
- b) Given two functions f(x) = 5x 3 and g(x) = (2x 3)/(3x 5).
 - i) Show that $(f_o g)(x) \neq (g_o f)(x)$

[3 Marks]

ii) Find $(f_0g)^{-1}(x)$ and hence $(f_0g)^{-1}(2)$

[4 Marks]

Question Two (12 Marks)

a) List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$, where $(a, b) \in R$ if and only if

i) $a = b$.	[2 Marks]
ii) $a + b = 4$.	[2 Marks]
iii) $a > b$.	[2 Marks]
iv) a b.	[2 Marks]

b) Show that the relation R on a set A is symmetric if and only if $R = R^{-1}$, where R^{-1} is the inverse relation. [4 Marks]

SECTION B (36 MARKS)

Question Three (12 Marks)

a) Let $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$, and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find:

i) A ∩B ∩C. [2 Marks]

ii) $A \cup B \cup C$. [2 Marks] iii) $(A \cup B) \cap C$. [2 Marks]

iv) $(A \cap B) \cup C$. [2 Marks]

b) Show by induction that for every natural number $n \ge 5$, $n^2 < 2^n$ [4 Marks]

COM 113

Question Four (12 Marks)

- a) Define an injunction [2 Marks]
- b) Using a figure, determine whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) =
- 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.

[4 Marks]

- c) Draw the Venn diagrams for each of these combinations of sets A, B, and C.
 - i) $A \cap (B-C)$

[2 Marks]

ii) $(A \cap B) \cup (A \cap C)$

[2 Marks]

iii) $(A \cap \overline{B}) \cup (A \cap \overline{C})$

[2 Marks]

Question Five (12 Marks)

a) Define a recurrence relation

[2 Marks]

- b) Let $A = \{a, b, c\}$, $B = \{x,y\}$, and $C = \{0, 1\}$. Find
 - i) $(A \times B \times C)$.

[2 Marks]

ii) $(C \times B \times A)$.

[2 Marks]

iii) $(C \times A \times B)$.

[2 Marks]

iv) $(B \times B \times B)$.

[2 Marks]

 $(D \wedge D \wedge V) A^2$

[2 Marks]

Question Six (12 Marks)

- a) Let $t_0, t_1, t_2, ...$ be defined by the formula $t_n = 2 + n$ for all integers $n \ge 0$. Show that this sequence satisfies the recurrence relation $t_k = 2t_{k-1} t_{k-2}$ [4 Marks]
- b) Use a membership table to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

[8 Marks]

Question Seven (12 Marks)

A professor in a discrete mathematics class passes out a form asking students to check all the mathematics and computer science courses they have recently taken. The finding is that out of a total of 50 students in the class,

30 took precalculus;

16 took both precalculus and Java;

18 took calculus;

8 took both calculus and Java:

26 took Java;

47 took at least one of the three courses.

9 took both precalculus and calculus;

Using a Venn diagram, solve the following questions.

i) How many students did not take any of the three courses?

[4 marks]

ii) How many students took all three courses?

[4 marks]

iii) How many students took precalculus and calculus but not Java? How many students

[4 marks]
