

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE COMPUTER SCIENCE

COURSE CODE: COM 113

COURSE TITLE: MATHEMATICS FOR COMPUTER SCIENCE

DATE: 23RD FEBRUARY, 2021

TIME: 9AM – 12.00 NOON

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

Page 1 of 4

REGULAR - MAIN EXAM

COM 113: MATHEMATICS FOR COMPUTER SCIENCE

STREAM: BSc (CS)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- *ii.* Do not write on the question paper.

SECTION A (31 marks) QUESTION ONE 16MKS

- a. What do you understand by the following symbols:
 - i. ∃
 - ii. Z
 - iii. Q
 - iv. $(A^c)^c$
- b. Given the alphabet $\mathcal{C} = \{a, b\}$ Define a language L₁ over \mathcal{C} to be a set of all strings that begin with the character *a* and have a length of at most four characters. [4mks]
- c. Explain using examples the following laws of sets: associative law and commutative law.

d. Explain four properties of an empty set.

QUESTION TWO 15MKS

a)	Define	e the following terms	
	i)	Inverse of a function	[1mk]
	ii)	Quantifier	[1mk]
	iii)	Rational number	[1mk]
	iv)	Domain	[1mk]
	v)	Open sequence	[1mk]
b)	State t	he principle of mathematical induction	[3mks]

[4mks]

[4mks]

[4mks]

c) Let A = Z the set of integers and let R be define by R b if and only if a < b. is R an equivalence relation [3mks]

d) Briefly explain the following

- i) Symmetric relation
- Equivalence relation ii)

SECTION B (39 marks)

QUESTION THREE 13MKS

a. Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ and define a binary relation R from A to B as follows:-Given any $(x, y) \in A \times B$, $(x, y) \in R \leftrightarrow x$ -y is even.

> State which ordered pairs that are in A x B, which are in R and examine each i. [6mks]

- ii. Graph Ax B by plotting all the points of A x B in the Cartesian plane and cycling points that are in R. [4mks]
- b. When is a collection of non-empty set said to be a partition? State the conditions.

QUESTION 4 [13 MKS]

a. Let $a_1, a_2, a_3 \dots b_1, b_2, b_3 \dots$ All satisfy the recurrence relation that the kth term equals 3 times the (k-1)st term for all integers $k \ge 1$:

 $a_k = 3a_{k-1}, b_k = 3b_{k-1}, c_k = 3c_{k-1}$. But suppose the initial condition was $a_1 = 0, b_1 = 1$ and $c_1 = 2$. Find:-

- i. a2, a3 a5. [3mks]
- ii. b₂, b₃, b₄.
- b. Show that the sequence $1, -1!, 2!, -3!, \dots, (-1)^n n! \dots$ for $n \ge 0$, satisfies the recurrence relation $s_k = -k.s_{k-1}$ for all integers $k \ge 1$. [7mks]

QUESTION 5 [13 MKS]

a.	Draw a binary tree to represent the expression $((a-b).c+(d/e).$	[4mks]
b.	Explain the following terms: - reflexive, transitive and symmetric.	[6mks]
c.	Give the equivalent ordered tuple of $(4, (-3)^2, \frac{1}{2}))$	[3mks]

[2mks]

[2mks]

[3mks]

[3mks]

QUESTION 6 [13 MKS]

- a. New sets can be defined in terms of known ones. Given a set S and a predicate P(x) defined for x in S there is a set A whose elements are exactly those elements of S for which P(x) is true.
 - i. What is the name of this principle? [2mks]
 - ii. Write the statement above using symbols. [4mks]
- b. Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as follows:-

 $R = \{(0,1) (1,2) (2,3)\}$. Find the transitive closure of R and draw a directed graph.

[7mks]

QUESTION 7 [13 MKS]

- a. Let *p* be the set {a, b, c, d, e, f, g}, let $A = \{b, c, e, g\}$ and $B = \{d, e, f, g\}$. Find AUB, $A \cap B$ and A^c and draw the Venn diagram for the representations. [7mks]
- b. Define the following: prefix notation, infix notation and postfix notation. [6mks]

####