

MAT 304

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE & BACHELOR OF EDUCATION ARTS

COURSE CODE: MAT 304E

COURSE TITLE:

ORDINARY DIFFERENTIAL EQUATIONS II

DATE: 16/7/2021

TIME: 0800-1100HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 304: ORDINARY DIFFERENTIAL EQUATIONS II

STREAM: EDS & EDA

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

i. Answer ALL questions from Section A and any Three from Section B

ii. Do not write on the question paper.

SECTION A: 31 MARKS (COMPULSORY SECTION)

Question **One** (16 Marks)

a) Classify the singular points, in the finite plane of the equation $x(x-1)^{2}(x+2)y''+x^{2}y'-(x^{3}+2x-1)y=0$ (4 Marks)

b) Solve the system of equations $y_1 - 2y_1 + 2y_2 = 2 - 4e^{2x}$, $2y_1 - 3y_1 + 3y_2 - y_2$ (7 Marks)

c) Given the initial-value problem y'=-x, y(0)=2. Show that there is a unique solution, hence find the solution. (6 Marks)

Question **Two** (15 Marks)

a) Show that $y_1 = x$ is a solution of $2x^2y'' + xy' - y = 0$ (3 Marks)

b) Use the method of reduction of order to find a second linearly independent solution of the differential equation in (a) and write the general solution. (9 Marks)

c) Solve the Boundary – Value Problem $y'' + y = 0, y(0) = 0, y(\pi) = 0$ (3 Marks)

Page 1 of 3

SECTION B (Answer any Three Questions)

Question Three (13 Marks)

Solve the differential equation y''+2y'=3x. Using the method of reduction of order to find a y_p (13 Marks)

Question Four (13 Marks)

- a) Given the Initial-Value Problem y' = -x, y(0)=2. Show that there is a unique solution, hence find the solution. (9 Marks)
- b) Find a solution of the Initial-Value Problem $\frac{dy}{dx} = x^2; x_0 = 2, y_0 = 1$ (4 Marks)

Question Five (13 Marks)

a) Solve the differential equation $x p^2 - (2x+3y) p+6y=0$ (7 Marks)

b) Solve the differential equation $(x^2-1)p^2-2xyp+y^2-1=0$ by breaking it up into two equations of Clairaut's form. (6 Marks)

Question Six (13 Marks)

Solve the equation $(1-x^2)y''-6xy'-4y=0$ near the ordinary point x=0

Question Seven (13 Marks)

a) Given $y = \frac{c+n}{c(c+1)(c+2)...(c+n-1)}$ find $\frac{dy}{dc}$. (3 Marks)

b) Obtain two linearly independent solutions valid near the origin of the equation 2xy'' + (1+x)y' - 2y = 0. (10 Marks)

Page 2 of 3