STA 100

MAIN EXAMINATION

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE & BACHELOR OF EDUCATION ARTS

COURSE CODE: STA 100

COURSE TITLE: INTEGRAL CALCULUS II

DATE: 27/7/2021

TIME: 0800-1100HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

AUC

STA 100

3 Hours

DURATION:

REGULAR - MAIN EXAM

STA 100: INTEGRAL CALCULUS II

STREAM: EDA & EDS

INSTRUCTIONS TO CANDIDATES

Answer All questions from Section A and any Three from Section B

SECTION A (31 MARKS). Answer ALL Questions

Question One [16 Marks]

(a) Define the term integrand.	[1 Marks]
(b) Compute the integral of the following functions;	
(i) $f(x) = \frac{2x^3 + 5x^2 + 8x + 9}{x}$,	[3 Marks]
(ii) $f(x) = \frac{x^2 + 5x + 6}{x + 2}$.	[3 Marks]
(c) If $\int (2x-9)dx = 0$, find the value of x.	[3 Marks]
(d) Show that $\int_1^\infty \frac{1}{x^2} dx$ is convergent.	[3 Marks]
(e) Evaluate $\int_0^{\frac{\pi}{2}} x \sin x dx$	[3 Marks]
Question Two [15 Marks]	
(a) Prove $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$	[4 Marks]
(b) Determine the area under the curve $f(x) = 2 + 6x - x^2$ in the domain Riemann sums.	[1,5] using [5 Marks]
(c) Determine $\int x^3 \sqrt{x^4 - 1} dx$.	[3 Marks]
(d) Evaluate $\int \frac{3x^2 + \cos x}{x^3 + \sin x} dx$.	[3 Marks]
SECTION B (39 MARKS)	
Question Three [13 Marks]	

(a) Evaluate the following integrals

(i) $\int x e^x dx$	[3 Marks]
(ii) $\int \frac{x-11}{(x+3)(x-4)} dx$.	[5 Marks]

(b) Find the volume generated by rotating the area under the curve y = 1 + x between x = 1 and x = 2 about the axis of x [5 Marks]

[6 Marks]

Question Four [13 Marks]

(a) Integrate $\int \frac{1}{(x+2)(x-1)^2} dx$

(b) Find $\int_0^6 y dx$, given the following values, using Simpson's rule for the interval $(0 \le x \le 6)$ [7 Marks]

MAT 114

x	0	1	2	3	4	5	6
y	8	12	14	11	9	3	1

Question Five [13 Marks]

(a) State the fundamental t	neorem of integral calculus.	[2 Marks]
0		

- (b) Evaluate $\int_0^3 e^{2x} dx$. [3 Marks]
- (c) Evaluate the area of the rectangle bounded by the line y = 3, the x-axis, the ordinate x = 1 and x = 5 using the formula $A = \int y dx$. [5 Marks]
- (d) Show that $\int_{-2}^{3} \frac{dx}{x^4}$ does not converge.

Question Six [13 Marks]

(a) Sketch the curve $y = 3x^2$ from x = 0 to x = 5. Evaluate the area enclosed by the curve, the x-axis and the ordinates x = 1 to x = 4. [5 Marks]

(b) Show that $\int_{1}^{\infty} \frac{1}{x} dx$ is divergent. [3]

(c) Find the length of the arc from $\theta = 0$ to $\theta = \frac{\pi}{4}$ of the curve given by $x = 3\cos\theta$, $y = 3\sin\theta$. [5 Marks]

Question Seven [13 Marks]

1

(a)	Define a proper	fraction.	1	Ma	ark	
-----	-----------------	-----------	---	----	-----	--

- (b) Sketch the curve $y = x^3 3x^2 + 2x$ from x = 0 to x = 3. [3 Marks]
- (c) Find the area enclosed between the curve in (a) and the axis of x from x = 0 to x = 2. [5 Marks]
- (d) Evaluate $\int_0^2 (x^3 3x^2 + 2x) dx$ and interpret your answer based on the solution from (b). [4 Marks]

[3 Marks]

[3 Marks]