

OFFICE OF THE DEPUTY PRINCIPAL

ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF HOTEL AND HOSPITALITY MANAGEMENT

COURSE CODE: BHM 213

COURSE TITLE: BUSINESS MATHEMATICS AND STATISTICS

DATE: 16TH **MARCH, 2021**

TIME: 2pm-5pm

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

BHM 312

REGULAR - MAIN EXAM

BHM 312: BUSINESS MATHEMATICS AND STATISTICS

STREAM: BBM / BED (Arts)

DURATION: 3

Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer Question ONE and any other TWO questions.
- ii. Do not write on the question paper.

SECTION A

QUESTION ONE (30 MARKS)

a) Differentiate between Correlation and Regression.

(4 marks)

b) Use the table below to answer the following questions:

X	15	24	25	30	35	40	45	65	70	75
Y	60	45	50	35	42	46	28	20	22	15

i. Determine the product moment coefficient of correlation (8 marks)

ii. Determine the regression equation and estimate y when x = 20 (6 marks)

c) State and explain four limitations of quantitative techniques. (4 marks)

d) Discuss five uses of index numbers in management. (8 marks)

QUESTION TWO (20 MARKS)

- a) Quantitative techniques have become popular in analyzing and solving management problems. Discuss how they are used in influencing management decisions (10 marks)
- b) Examine five major problems a modern manager would experience in using quantitative techniques in analyzing and solving business problems. (10 marks)

QUESTION THREE

(20 MARKS)

A woven cloth is liable to contain faults and is subjected to an inspection procedure. Any fault has a probability of 0.7 that it will be detected by the procedure, independent of whether any other fault is detected or not.

Required:

- a) If a piece of cloth contains three faults, A, B and C,
 - i) Calculate the probability that A and C are detected, but that B is undetected;

(4 marks)

- ii) Calculate the probability that any two of A, B and C be detected, the other fault being undetected; (4 marks)
- iii) State the relationship between your answers to parts (i) and (ii) and give reasons for this. (2 marks)
- b) Suppose now that, in addition to the inspection procedure given above, there is a secondary check which has a probability of 0.6 of detecting each fault missed by the first inspection procedure. This probability of 0.6 applies independently to each and every fault undetected by the first procedure.
 - i) Calculate the probability that a piece of cloth with one fault has this fault undetected by both the inspection procedure and the secondary check; (4 marks)
 - ii) Calculate the probability that a piece of cloth with two faults has one of these faults detected by either the inspection procedure or the secondary check, and one fault undetected by both; (4 marks)
 - iii) Of the faults detected, what proportion are detected by the inspection procedure and what proportion by the secondary check? (2 marks)

QUESTION FOUR

(20 MARKS)

The following data pertain to Bar lengths and the number of bar in each class.

Bar lengths (cm)	No. of bars(f)
201 – 250	25
251 - 300	36
301 - 350	49
351 - 400	80
401 - 450	51
451 - 500	42
501 - 550	30

Calculate;

a)	Mean	(3 Marks)
b)	Mode	(4 Marks)
c)	Median	(4 Marks)
d)	variation	(3 Marks)
e)	Standard deviation	(3 Marks)
f)	Coefficient of skewness	(3 Marks)

QUESTION FIVE

(20 MARKS)

a) A company manufacturing a product known as 257 uses five components in its assembly. The quantities and prices of the components used to produce a unit of K257 in 1982, 1983 and 1984 are tabulated as follows:

COMPONENT	19	082	19	083	1984	
	Quantity	Prices	Quantity	Prices	Quantity	Prices
A	10	3.12	12	3.17	14	3.20
В	6	11.49	7	11.58	5	11.67
С	5	1.40	8	1.35	9	1.31
D	9	2.15	9	2.14	10	2.63
Е	50	0.32	53	0.32	57	0.32

Required:

- i) Calculate Laspyere's type price index number for the cost of one unit of K257
 for 1983 and 1984 based on 1982. (6 marks)
- ii) Calculate Paasche type price index numbers for the cost of one unit of K257 for 1983 and 1984 based on 1982. (6 marks)
- iii) Compare and contrast the Laspeyre and Paasche price-index numbers you have obtained in (i) and (ii) (3 marks)
- iv) Explain the usefulness of an index of Industrial Production and an index of retail prices to both sides in a series of pay negotiations. (5 marks)
