CHE 203

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER REGULAR MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 203

COURSE TITLE:

ORGANIC CHEMISTRY II

DATE: 28TH JULY 2021

TIME: 2 - 5 PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 6 PRINTED PAGES

PLEASE TURN OVER

A constituent college of Moi University

REGULAR – MAIN EXAM

CHE 203: ORGANIC CHEMISTRY II

STREAM: BED (Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions

Question One

a)	Distinguish	between the fol	llowing terms	as used in stere	ochemistry	(6 Marks)
----	-------------	-----------------	---------------	------------------	------------	-----------

- i) Chirality and stereoisomers
- ii) Conformation and configuration
- iii) Enantiomers and diastereomers

i)	Draw both chair conformations of cis-1,2- dimethylcyclohexane,				
	and determine which conformer is more stable	(3 Marks)			
ii)	Repeat for the trans isomer.	(3 Marks)			
iii)	Predict which isomer (cis or trans) is more stable.	(3 Marks)			

Question Two

b)

a) For each of the following structures, star (*) any asymmetric carbon atom (s),

label it as (R) or (S), hence identify the structure as either chiral, achiral or mesocompound(11 Marks)

b)

i) When one of the enantiomers of 2-butanol is placed in a polarimeter, the observed rotation is 4.05° counter clockwise. The solution was made by diluting 6 g of 2-butanol to a total of 40 mL, and the solution was placed into a 200-mm polarimeter tube for

the measurement. Determine the specific rotation for this enantiomer of 2-butanol. $(2 \frac{1}{2} \text{ Marks})$

ii) The specific rotation of (S)-2-iodobutane is +15.90°. Determine the % composition of a mixture of (R)- and (S)-2-iodobutane if the specific rotation of the mixture is -3.18°
(2 ¹/₂ Marks)

Question Three

a) Give the IUPAC name for each of the following compounds, classifying each as methyl, primary, secondary, or tertiary halide.
(5 Marks)

b) For each reaction, give the expected substitution product, and predict whether the mechanism will be predominantly first order $(S_N 1)$ or second order $(S_N 2)$ (7 ¹/₂ Marks)

c) State the Zaitsev's rule

(1 Mark)

d) Predict the products of E1 elimination of the following compounds. Label the major and minor products (4 Marks)

CHE 203

- e) S_N1 substitution and E1 elimination frequently compete in the same reaction.
 - i) Propose a mechanism and predict the products for the solvolysis of

1-bromo-1-methylcyclopentane in ethanol

ii) Compare the function of the solvent (ethanol) in the E1 and S_N1 reactions

Question Four

- a) State Markovnikov's Rule
- b) Draw the major products in the following reactions indicating stereochemistry where applicable (10 ¹/₂ Marks)

(c) Outline the mechanism for the reaction between but-1-ene and HBr and explain why there are two different products, one major and the

(1 Mark)

(2 Marks)

(3 Marks)

CHE 203

other minor.

(3 Marks)

 $CH_2 = CH - CH_2 - CH_3 + HBr$

(d) Show how you would accomplish conversions of 1-methylcyclohexene to 1-bromo-1methylcyclohexane shown below (3 Marks)

