

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAM

FOR THE DEGREE OF BACHELOR OF EDUCATION **SCIENCE**

COURSE CODE:

PHY 434

COURSE TITLE: ELECTROMAGNETIC THEORY

DATE: 21/07/2021

TIME: 0800 - 1100 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

REGULAR –MAIN PHY 434 ELECTROMAGNETIC THEORY

STREAM: BED (Science) DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES

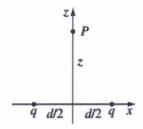
i. Answer TWO questions in section A and any other THREE questions in section B.

Question One (14 Marks)

- (a) Write down the four Maxwell's equations (4 Marks)
- (b) Derive the Poisson's and Laplace equations (4 Marks)
- (c) A monochromatic source of 60 W is radiating equally in all directions in a vacuum as a function of the distance. Calculate the amplitude at the distance 2m from source.

(6 Marks)

Question Two (14 Marks)


- (a) Show that $\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$ is contained in Maxwell's equation (5 Marks)
- (b) Write down the expression for calculating electric and magnetic force (2 Marks)
- (c) What's the force on a 0.1 C charge moving at velocity $v = (10\hat{j} 20\hat{k})ms^{-1}$ in a magnetic field $\hat{B} = (-3\hat{i} + 4\hat{k}) \times 10^{-4}T$ (5 Marks)
- (d) Define a magnetic vector potential (2 Marks)

Question Three (14 Marks)

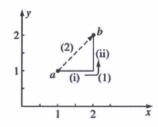
- (a) List the four properties of electromagnetic waves (4 Marks)
- (b) With aid of a diagram describe the spectrum of electromagnetic radiation with respect to order of frequency and wavelength (4 Marks)
- (c) Calculate the magnitude and direction of the magnetic field when $\vec{E} = 750 \ N/C$ and is in the y direction (3 Marks)
- (d) Sketch the electromagnetic wave showing the \vec{E} and \vec{B} components (3 Marks)

Question Four (14 Marks)

- (a) State Coulomb's Law of electrostatic in mathematical form (1 marks)
- (b) Determine the force electric field If we have several point charges q_1, q_2, \ldots, q_n , at distances r_1, r_2, \ldots, r_n from Q. (4 Marks)
- (c) Find the electric field a distance z above the midpoint between two equal charges (q), a distance d apart Figure below. (4 Marks)

(d) State and proof the First uniqueness theorem of boundary condition

(5 Marks)


Question Five (14 Marks)

(a) Find the gradient of $r = \sqrt{x^2 + y^2 + z^2}$ (the magnitude of the position vector (3 Marks)

(b) Find the energy of a uniformly charged spherical shell of total charge q and radius R

(4 Marks)

(d) Calculate the line integral of the function $v = y^2 \hat{x} + 2x(y+1)\hat{y}$ from the point $\mathbf{a} = (1,1,0)$ to the point $\mathbf{b} = (2,2,0)$, along the path (1) and (2) shown in figure below

What is $\oint V \cdot dI$ for the loop that goes from a to b a long (1) and return to a along (2)?

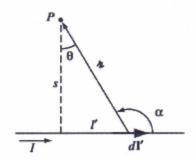
(7 Marks)

Question Six (14 Marks)

(a) What is the significance of Clausius-Mossotti relation?

(1 Mark)

(b) With aid of a diagram describe the hysteresis loop formation


(3 Marks)

(c) (i)Write a mathematical statement for Biot-Savart law

(1 Mark)

(ii) Estimate the magnetic field a distance S from a long wire carrying a steady current I.

(5 Marks)

(d) Derive the equation for estimating the retarded potentials

(4 Marks)

Question Seven (14 Marks)

(a) Define the term Poynting vector	(2 Mark)
(b) Write and proof the mathematical statement of Poynting theorem	(10 Marks)
(c) Explain the reflection coefficient and transmission coefficients	(2 Marks)