PHY 415E

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

<u>FOURTH</u> YEAR <u>SECOND</u> SEMESTER <u>MAIN</u> EXAM

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 415E COURSE TITLE: STATISTICAL MECHANICS

DATE: 15/07/2021

TIME: 1300 - 1600 HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

1 of 3

PHY 415E

<u>REGULAR – MAIN</u> PHY 415E: STATISTICAL MECHANICS) DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES

i. Answer **TWO** questions in section **A** and any other **THREE** questions in section **B**. You may need to use the following constants

 $h = 6.6.63 \times 10^{-34} Js$, $c = 3 \times 10^8 m/s$ and Ts = 5,800 K

SECTION A (28 MARKS) Question One (14 Marks)

STREAM: BED (Science)

(a)	Explain the follow	wing fundamental	terms as used	in statistical	mechanics
-----	--------------------	------------------	---------------	----------------	-----------

- (i) Micro-canonical ensemble (2 Marks)
- (ii) Canonical ensemble (1 Marks)
- (iii) Grand canonical ensemble (1 Mark)
- (b) Distinguish between microstate and macrostate and their importance in study of statistical mechanics (3 Marks)
- (c) Explain the difference between the terms entropy and enthalpy (4 Marks)
- (d) 1.5kg of a copper material was cooled from 150°C to 45°C. Calculate its change in entropy. (3 Marks)

Question Two (14 Marks)

- (a) Distinguish between a T-space and a phase point.(2 Marks)(b) Define the partition function in statistical mechanics(2 Marks)(c) What is ensemble average? Show that the ensemble average $\overline{R} = \frac{\int_{-\infty}^{+\infty} R(x)N(x).dx}{\int_{-\infty}^{+\infty} N(x).dx}$ (4 Marks)(d) State the second law of thermodynamics(1 Mark)(e) Estimate the temperature T_E of the earth, assuming that it is in radiation equilibrium with
- the sun (assume the radius of sun $Rs = 7 \times 10^8$ m, the earth-sun distance $r = 1.5 \times 10^{11}$ m, the temperature of solar surface Ts = 5,800 K) (5 Marks)

SECTION B (42 MARKS)

Question Three (14 Marks)

(a) The energy S is defined as S = KlogC and the most probable distribution is given by n_i = w_iexp(-α - βε_i) where β = 1/_{KT} and exp(α) = V/_{Nh³} (2πmKT)^{3/2}. Derive an expression for the ideal gas equation given as PV = NKT (7Marks)
(b) What does the Zeroth law of thermodynamics state? (1 Marks)

(c) For an assembly of a classical gas, express the Pressure, Energy and Specific heat in terms of the partition function Q. (6 Marks)

Question Four (14 Marks)

- (a) What is meant by a blackbody radiation (2 Mark)
- (b) Discuss the properties of a blackbody radiation (2 Marks)
- (c) Describe the Bose-Einstein statistical distribution and derive its most probable distribution

Question Five (14 Marks)

- (a) Derive Boltzmann's formula for the probability of atoms in thermal equilibrium occupying a state E, at absolute temperature T (9 Marks)
- (b) If *n* is the number of conduction electrons per unit volume and *m* the electron mass then

show that the Fermi energy is given by the expression $E_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{\frac{2}{3}}$

Question Six (14 Marks)

(a) (i) Define density of state

(1 Mark)

(2 Marks)

(5 Marks)

(10 Marks)

- (ii) The density of states functions for electrons in a metal is given by $Z(E)dE = 13.6 \times 10^{27} E^{1/2} dE$ Calculate the Fermi level at a temperature few degrees above absolute zero for copper which has 8.5×10^{28} electrons per cubic metre. (2 Marks)
- (iii) Using the results of problem (ii), Calculate the velocity of electrons at the Fermi level in copper (3Marks)

(b) Obtain the expression for the Fermi-Dirac distribution given as $n_k = \frac{w_k}{e^{(\alpha+\beta\epsilon_k+1)}}$ (8 Marks)

Question Seven (14 Marks)

- (a) Explain the Bose-Einstein condensation (3 Marks)
- (b) Briefly describe the free electron model, and state any three area of application (5 Marks)
- (c) State any two properties of Laser radiation
- (d) Determine the wavelength of radiation given out by a laser with an energy of 3 eV, (4 Marks)
