

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2021 /2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS

COURSE CODE:

MAT 205

COURSE TITLE:

ORDINARY DIFFERENTIAL EQUATIONS I

DATE: 22nd JULY, 2021

TIME: 1:00PM- 4:00PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

Page 1 of 4

REGULAR – MAIN EXAM

MAT 205: ORDINARY DIFFERENTIAL EQUATIONS I

STREAM: BED

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- *ii.* Do not write on the question paper.

SECTION A [31 MARKS] ANSWER ALL QUESTIONS

QUESTION ONE [16 MARKS]

- a) Define the terms

 Ordinary differential equation
 Partial differential equation

 b) Find a differential equation to represent the family of the curves y = Ae^x + Be^{-x} + C
 [4mks]

 c) Solve the differential equation e^x (1 + x²) dy/dx 2x(1 + e^y) = 0
 [4mks]
 - d) Use the integrating factor method to solve $(x^2 + 1)\frac{dy}{dx} + 2xy = x^2$ [6mks]

QUESTION TWO [15 MARKS]

- a) Show that (12x + 5y 9)dx + (5x + 2y 4)dy = 0 is exact. Hence solve it [4mks]
- b) Solve the differential equation $\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 29y = 0$, given that at x = 0, y = 0, $\frac{dy}{dx} = 15$
 - [6mks]
- c) Find the general solution of $(D^2 + 9)y = \cos 3x$ [5mks]

SECTION B: 39 MARKS [ATTEMPT ANY THREE QUESTIONS]

QUESTION THREE [13 MARKS]

- a) The displacement x of a particle moving in a straight line at time t is given by the relation $x = A \sin(\mu t + k)$, obtain the differential equation to represent the phenomenon. [2mks]
- b) Show that $xdy ydx = \sqrt{x^2 + y^2}$ is homogeneous hence solve it. [11mks]

QUESTION FOUR [13 MARKS]

a) Solve (1 + xy)ydx + (1 - xy)xdy = 0 by transforming it first into exact form. [6mks]

b) Solve
$$\left(\frac{dy}{dx}\right)^2 - 2\frac{dy}{dx}\sinh(x) - 1 = 0$$
 [7mks]

QUESTION FIVE [13 MARKS]

a) Find a particular integral for the differential and hence find its general solution

$$(D^2 - 4D + 3)y = e^{4x}$$
[7mks]

b) Solve the following homogeneous linear differential equation

$$x^{3} \frac{d^{3} y}{dx^{3}} + 3x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} = 24x^{2}$$
 [6mks]

QUESTION SIX [13 MARKS]

Solve the simultaneous differential equations

$$\frac{dx}{dt} + 4x + 3y = t$$
$$\frac{dy}{dt} + 2x + 5y = e^{t}$$

[13mks]

QUESTION SEVEN [13 MARKS]

Solve $(D^2 - 3D + 2)y = 0$ by the method of undetermined coefficients (Find a power series solution) [13mks]