CHE 318

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 318

COURSE TITLE:

COORDINATION CHEMISTRY

DATE: 16TH JULY 2021

TIME: 2 -5 PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

CHE 318

REGULAR - MAIN EXAM

CHE 318: COORDINATION CHEMISTRY

STREAM: BED (Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES i. Answer ALL questions. ii. Diagrams may be used whenever they serve to illustrate the answer. **Question One** a) Give IUPAC names of the following coordination compounds (2 Marks) i) $[Fe(CN)_6]^{4-}$ ii) [CuCl₂(CH₃NH₂)₂] b) Give the formulae of the following coordination complexes (2 Marks) i) Tetraamminedibromoplatinum (IV) bromide ii) Cis-diamminedichloroplatinum (II) c) Draw the structures of the following complexes and give their possible geometries i) MnF6 (1 Mark) ii) $\left[Ag(NH_3)_2\right]^+$ (1 Mark) d) Draw the structures of the following ligands indicating clearly the donor atoms: i) EDTA (1 Mark) ii) Ethylenediamine (en) (1 Mark) iii) Pyridine (1 Mark) iv) CO_3^{2-} (1 Mark) e) Indicate ALL possible types of isomerism exhibited by the following compounds and give the structures of the isomers i) Pt(NH₃)₂Cl₂ (2 Marks)

ii) CrCl_{3.6H2}O (2 Marks)

CU	E	2	1	Q
UL	LE	2	I	0

Question Two

a)	The complex ion $[Ni(NH_3)_6]^{2+}$ has two unpaired electrons. Describe the					
	bon	bonding in the complex ion using the following theories				
	i)	Valence bond	(3 Marks)			
	ii)	Crystal field	(3 Marks)			
	iii)	Molecular orbital (σ -bond only) [Atomic no; Ni =28]	(3 Marks)			
b)	b) For the complex ions $[Cr(en)_3]^{3+}$, $[MnCl_4]^{2-}$ and $[Cu(H_2O)]^{2+}$;					
	[Ato	mic no; $Cr = 23$, $Mn = 25$, $Cu = 29$]. Determine,				
	i)	The term spectroscopic symbols of the central metal ions	(3 Marks)			
	ii)	μ-spin-only values	(3 Marks)			
i	ii)	CFSE	(3 Marks)			
i	iv) Which complex/complexes will experience Jahn-Teller distortion?					
	3	Give a reason for your answer	(2 Marks)			
Qı	iestio	n Three				
a)	Exp	ain the bonding in coordination compounds in terms of Werner's postulates	(4 Marks)			
b)	Explain briefly the meaning of the following terms giving an example in					
	each	case;				
	i)	Dissociative reaction mechanism	(2 Marks)			
	ii)	Outer orbital complex	(2 Marks)			
	iii)	Jahn-Teller distortion	(2 Marks)			
	iv)	Charge transfer band	(2 Marks)			
c)	Expl	ain briefly the three rules of an electronic transition	(3 Marks)			
d)	Discuss briefly giving an example in each case-the role of coordination compounds in					
	i) Biological systems	(1 Mark)			
	i	i) Analytical chemistry	(1 Mark)			
	i	ii) Medicinal chemistry	(1 Mark)			
Qu	estio	n Four				

a) Give the ground state electronic configurations of the following atoms or ions (Atomic no. Cr = 24, Fe = 26, Cu = 29, Ru = 44)

CHE 318

	i) Cr		(1 Mark)
	ii) Fe ³⁺		(1 Mark)
	iii) Cu		(1 Mark)
	iv) Ru		(1 Mark)
b)	Illustrating with an example in each case, briefly des	cribe the basic ideas in	
	the following types of isomerisms in coordination co	mpounds	
	i) Ionization isomerism		(2 Marks)
	ii) Coordination isomerism		(2 Marks)
	iii) Linkage isomerism		(2 Marks)
,	iv) Geometric isomerism		(2 Marks)
c)	Show how the d orbitals are perturbed in the followir	ng fields;	
	i) Tetrahedral		(2 Marks)
	ii) Square planar		(2 Marks)
	iii) Octahedral		(2 Marks)