

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (APPLIED STATISTICS WITH COMPUTING)

COURSE CODE:

STA 421

COURSE TITLE:

STATISTICAL COMPUTING

DATE: 10/03/2021

TIME: 1400 – 1700 HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR – MAIN EXAM

STA 421: STATISTICAL COMPUTING

STREAM:

DURATION: 3 hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and any THREE from section B.

SECTION A [31 Marks] Answer All questions]

QUESTION ONE [15 Marks]

a)	Define clearly the following terms	[4 Marks]
	i) Simulation.	
	ii) Pseudo random number generator.	
	iii) System	
	iv) State of a system	
b)	Distinguish between deterministic and stochastic simulation models and give an	example for
	each.	[4 Marks]
c)	State two reasons why simulation is important	[2 Marks]
d)	Give three situations where simulation has been used.	[3 Marks]
e)	Identify two properties that random number generators should possess.	[2 Marks]

QUESTION TWO [16 Marks]

a)	What is the difference between dynamic and static model?	[2 Marks]
b)	Describe Monte Carlo Simulation	[3 Marks]
c)	Give a diagrammatic representation of model development life cycle.	[3 Marks]
d)	State any three random number generators tests.	[3 Marks]
e)	Why do we build models (as opposed to experiment on actual systems)?	[2 Marks]
f)	Give three fundamental steps that are used in model building?	[3 Marks]

ECTION B [39 Marks] Answer any THREE questions]

QUESTION THREE [13 Marks]

- a) Discuss any two classifications of a system.
- b) Using each of the following methods of pseudo random number generators, generate six random numbers;

i) Midsquare method, given $Z_0 = 7182$ [3 Marks]

- ii) Linear congruential method, given $Z_0 = 7, a = 5, c = 3, m = 16$ [3 Marks]
- iii) Additive congruential method, given $Z_0 = 6$, a = 2, c = 5, m = 14 and k = 1 [3 Marks]

QUESTION FOUR [13 Marks]

- a) Consider a random variable X which takes on values 1, 2, 3 and 4 with probability 0.15, 0.20, 0.25 and 0.40 respectively. Determine the mean and variance of X. Sketch the probability density function (pdf) and probability distribution function (PDF) of X. [7 Marks]
- b) Let X be a random variable and f be a function such that $f(X) \in \Re$, then Monte Carlo estimate

for E(f(X)) is given by $Z_N^{MC} = \frac{1}{N} \sum_{j=1}^N f(X_j)$ where $X_1, X_2, ..., X_N$ are i.i.d with the same distribution of X. Write a program that computes Monte Carlo estimates. [6 Marks]

QUESTION FIVE [13 Marks]

a) i) Given the model $y = \beta_0 + \beta_1 x + ey = \hat{\beta}_0 + \hat{\beta}_1 x$. Write down an expression for the error of estimation and describe what it means when it is equivalent to zero and when it gets larger.

[4 Marks]

[4 Marks]

ii) Consider the model $y_i = \beta_0 + \beta_1 x_i + e_i$, $x_i \sim N(4, 0.1)$, $e_i = N(0, 0.5)$, $\beta_0 = 2.5$, $\beta_1 = 1.8$ Write a program in R that generates 10000 variates. [4 Marks]

b) Using the following data for X and Y respectively: (1, 4), (2, -1), (1.5, 3), (-2, 5), (3, 2), write down that are used to fit a simple linear regression model and determine the SSE using the for the loop. [5 marks]

QUESTION SIX [13 Marks]

a) Assume $X \sim Exp(1)$ and $Y \sim N(0, X)$, that is Y is normally distributed with a random variance. Use Monte Carlo estimation to estimate E(X / Y) = 4 and Var(X / Y) = 4 [5 Marks]

b) Assume the following density unction $f(x) = \begin{cases} y'_{x^2} & \text{if } x \ge 1\\ 0 & \text{otherwise} \end{cases}$

Write a program which uses the inverse transform method to generate random numbers

Test your program and write down code to plot a histogram of 10 000 random numbers together with the density f [8 Marks]

QUESTION SEVEN [13 Marks]

a) A computer repair person is 'beeped' each time there is a call for service. Then number of beep per hour is distributed according to Poisson with $\lambda=2$ per hour. Find the probability of three beeps in the next one hour and two or more beeps in one hour. [5 Marks]

b) Identify and describe four properties of a good arithmetic random number generator. [8 Marks]