

MAT 320



## **OFFICE OF THE DEPUTY PRINCIPAL**

# ACADEMICS, STUDENT AFFAIRS AND RESEARCH

# UNIVERSITY EXAMINATIONS

# 2020 /2021 ACADEMIC YEAR

# THIRD YEAR SECOND SEMESTER REGULAR EXAMINATION

# FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE & BACHELOR OF EDUCATION ARTS

COURSE CODE: MAT 320

COURSE TITLE: DYNAMICS

DATE: 13/7/2021

**TIME: 1300-1600HRS** 

# **INSTRUCTION TO CANDIDATES**

• SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

## MAT 320

## **REGULAR - MAIN EXAM**

## MAT 320: DYNAMICS

#### STREAM: EDA & EDS

#### **DURATION: 3 Hours**

#### INSTRUCTIONS TO CANDIDATES

- i. Answer All questions from Section A and any Three from Section B
- ii. Take  $g = 9.8m/s^2$ .

#### SECTION A (31 MARKS). Answer ALL Questions

## Question One (16 Marks)

(a) A body moving with simple harmonic motion has a velocity of 3m/s when 375mm from the mid position and acceleration of  $1m/s^2$  when 250mm from the mid position. Calculate the;

| (i) | period time, | (2  Marks) |
|-----|--------------|------------|
|-----|--------------|------------|

- (ii) amplitude. (4 Marks)
- (b) A body whose true weight is 13kg appeared to weigh 12kg, when weighed by a spring in a moving lift. What was the acceleration of the moving lift? (2 Marks)
- (c) A mass of 500kg moves on a straight line from a speed of 540km/h to 720km/h in 2 minutes. What impulse developed in this time? (3 Marks)
- (d) A small stone of mass m is thrown vertically upwards with initial speed u. If the air resistance at speed v is  $mkv^2$ , where k is a positive constant, show that the stone attains maximum height H given by  $H = \left(\frac{1}{2k}\right) \log\left(1 + \frac{ku^2}{g}\right)$ . (5 Marks)

## Question Two (15 Marks)

- (a) State the Hamilton's principle.
- (b) The kinetic energy of a pendulum is given by  $T = \frac{1}{2}ml^2\theta^2$  and potential energy is given by  $U = mgl(1 - \cos\theta)$ . Obtain its Lagrangian. (2 Marks)
- (c) Show that the total work done by the external force F in carrying a particle from point A to point B on a curve C is equal to kinetic energy gained in the process. (4 Marks)
- (d) The particle P with mass 2 moves along x-axis is attracted towards the origin O by a force whose magnitude is numerically equal to 8x. If it is initially at rest at x = 20 and has also a dumping force whose magnitude is numerically equal to 8 times equal to instantaneous speed. Evaluate the:
  - (i) position of the particle at any time t, (4 Marks)

(2 Marks)

MAIN EXAMINATION

(ii) velocity of the particle at any time t.

# SECTION B (39 MARKS)

#### Question Three (13 Marks)

Given that a particle moves along a space curve described by  $r = 3\cos t\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ . Determine the:

| (a) | unit tangent to the curve,     | (4 Marks) |
|-----|--------------------------------|-----------|
| (b) | unit normal to the curve,      | (3 Marks) |
| (c) | unit binormal to the curve,    | (3 Marks) |
| (d) | torsion and radius of torsion. | (3 Marks) |

#### Question Four (13 Marks)

(a) An object of mass 20kg moves with simple harmonic motion in x-axis. Initially it is located at a distance of 4m from the origin and has a velocity of 15m/s and acceleration of  $100m/s^2$  directed towards the origin. Find the;

| (i)   | position at any time,                                 | (4  Marks) |
|-------|-------------------------------------------------------|------------|
| (ii)  | amplitude, frequency and periodic time,               | (4 Marks)  |
| (iii) | force on the object when $t = \frac{\pi}{10}$ seconds | (2 Marks)  |

(b) The position vector of a moving a particle P relative to the fixed point O at any time t is given by  $r = (10 - t^2)\hat{i} + 3t\hat{j} - 4t\hat{k}$ . Find the value of t when the acceleration of P is perpendicular to the vector  $\vec{OP}$ . (3 Marks)

#### Question Five (13 Marks)

- (a) State Lagrange equation of motion.
- (b) A particle is projected with the velocity of 49m/s at an elevation of  $30^{\circ}$ . Determine the;

| (i)  | time of flight,   | (2 Marks)  |
|------|-------------------|------------|
| (ii) | horizontal range, | (2  Marks) |

- (iii) greatest height attained. (2 Marks)
- (c) A particle of mass 5g moves along x-axis under the influence a force of attraction to origin O which is numerically equal to 40 times the instantaneous distance from origin O and, damping force proportional to instantaneous speed; when the speed is 10m/sthe damping is 200. Assuming that the particle from rest at a distance of 20cm from O, find the position of the particle at any time t. (5 Marks)

## Question Six (13 Marks)

(3 Marks)

(2 Marks)

1

(a) A projectile is launched with the initial speed  $v_0$  at an angle  $\alpha$  with the horizontal. Calculate the;

| (i)  | position vector at any time $t$ ,         | (2  Marks) |
|------|-------------------------------------------|------------|
| (ii) | time it takes to reach the highest point, | (2  Marks) |

(iii) maximum speed reached,

- (iv) time of flight back to the earth. (2 Marks)
- (b) A particle moves along a straight line  $\overrightarrow{OX}$  such that its displacement X from O at time t is given by  $x'' + 2\sqrt{\frac{g}{l}x'} + \frac{3g}{l}x = 0$ . Find the position of the particle at any time t. Write down the period of the oscillation. (5 Marks)

#### Question Seven (13 Marks)

(a) State the Newton's laws of motion.

(3 Marks)

(2 Marks)

(b) A particle of mass m is constrained to execute Simple harmonic motion under a force towards O of magnitude  $mw^2x$ , x being the particle's displacement from O. When passing through O, its velocity is v, and when its velocity has become  $\frac{v}{2}$  in the same direction and impulse I is applied to the particle in the direction of its motion. Assuming the law of force, find time and total distance travelled from O to the first position of instantaneous rest. (10 Marks)