

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2020 /2021 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS

MAIN EXAM

COURSE CODE: MAT 311

COURSE TITLE: REAL ANALYSIS II

DATE: 18/03/2021

TIME: 0900 – 1200 HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF PRINTED PAGES

PLEASE TURN OVER

MAT 311

RUGULAR – MAIN EXAMINATION

MAT 311: REAL ANALYSIS II

STREAM: BED SCI/ARTS

TIME: 3 HRS

EXAMINATION SESSION: MARCH

YEAR: 2020/2021

INSTRUCTIONS TO CANDIDATES

- *(i) Answer all questions in section A (Compulsory)*
- *(ii) Answer any other THREE questions in section B*
- *(iii)* Answers should be comprehensive, informative and neat.

SECTION A (31 MARKS)

Question One (16 Marks)

a). Define the following terms

i). A limit of a sequence	(1 Mark)
ii). Lebesgue Measure	(2 Mark)
iii). Uniform convergence of sequence of functions	(2 Marks)
iv). Derivative of a functions f at a point p	(2 Marks)
b). Describe the lower and upper Riemann integrals.	(4 Marks)
c). Prove that if f is a function of bounded variation, then f is bounded.	(5 Marks)

Question Two (15 Marks)

a). Let {x_n} and {y_n} be sequences which converge to x and y respectively. Prove that the sequence {x_n − y_n} converge to x − y. (3 Marks)
b). Let {x_n} and {y_n} be defined as x_n = ¹/_n and y_n = ²⁺ⁿ/_n.

i). Determine the values of x and y if limits x = lim_{n→∞} x_n and y = lim_{n→∞} y_n (2 Marks)
ii). Compute x_n + y_n and x + y hence, show that the new sequence {x_n + y_n} to x + y.

(4 Marks)

c). Prove that a composite function $g \circ f$ is continuous at a if f is continuous at a and g is continuous at b = f(a). (3 Marks) d). Find the limit of Convergence of the series $\sum_{n=0}^{\infty} \frac{1}{4^n}$. (3 Marks)

SECTION B (39 MARKS)

Question Three (13 Marks)

a). State and prove the Rolle's theorem. (6 Marks) b). Show that the sequence $\{f_n\}$ defined by $f_n = \frac{nx}{1+n^2x^2}$ on $(0, \infty)$ converges pointwise to 0. (4 Marks)

c). Prove that the sequence $\{x_n\}$ where $x_n = \frac{1}{n^2}$ is a Cauchy sequence. (3 Marks)

Question Four (13 Marks)

a). Find the values of x for which the series $\sum_{n=0}^{\infty} (8x)^n$ converges, hence, state the radius of convergence. (4 Marks)

b). Prove that a sequence $\{f_n\}$ of bounded functions on a set $D \subseteq \mathbb{R}^n$ to \mathbb{R}^m converges uniformly on D to a function f if and only if $||f_n - f|| \to 0$. (5 Marks)

c). (i). Define a right-hand side limit of a function f(x). (1 Mark)

(ii). Let f be a function defined as
$$f(x) = \begin{cases} 3-x & \text{for } x \le 1\\ 2x^2 & \text{for } x > 1 \end{cases}$$
. Find $\lim_{x \to 1} f(x)$. (3 Marks)

Question Five (13 Marks)

a). Prove the a Cauchy sequence is bounded.

(4 Marks)

b). Let $\{f_n\}$ be a sequence of functions defined as $f_n = \frac{1}{n}\cos^2(nx)$. Show that $\{f_n\}$ converges uniformly to 0. (4 Marks)

c). Prove that any monotonic increasing function is a functions of bounded variation.(5 Marks)

Question Six (13 Marks)

a). Let $f: [0,1] \rightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

Show that f is not Riemann integrable but Lebesgue integrable (5 Marks)

b). Let $\sum_{n \in \mathbb{N}} x_n$ be a series of elements of \mathbb{R} . Prove that the series converges in \mathbb{R} if and only if for each real number $\epsilon > 0$, there is an $N(\epsilon) \in \mathbb{N}$ such that

$$\left|\sum_{k=n}^{m} x_{k}\right| < \epsilon \text{ for all } m \ge n \ge N(\epsilon).$$

(6 Marks)

c). Let $V_f[a, b]$ be the total variation of the function f. Show that the total variation of the function f(x) = 2 is zero. (1 Marks)

Question Seven (13 Marks)

- a) Let {x_n} be a sequence of real numbers which is monotone increasing, then the sequence converges if and only if it is bounded, in which case, its limit is sup{x_n}. (8 Marks)
- b). i). What is a power series?
 - ii). Determine the radius of convergence and the interval of Convergence for the powers series

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{(-3)^n}.$$

(4 Marks)

(1 Mark)

Page 3 of 3