

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS

MAIN EXAM

COURSE CODE: MAT 210

COURSE TITLE: CALCULUS II

DATE: 18/03/2021

TIME: 1400 – 1700 HRS

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF PRINTED PAGES

PLEASE TURN OVER

MAT 210 **REGULAR - MAIN EXAM**

MAT 210: CALCULUS II

STREAM: BSC (CS & ACS)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer All questions from Section A and any Three from Section B
- ii. Do not write on the question paper.

SECTION A (31 MARKS)

Question One (16 Marks)

(a) State the Rolle's theorem. (2 Marks)

- (b) Solve the integral $\int \cos 5\theta \cos 7\theta d\theta$.
- (c) Use the trapezoidal rule to estimate the area $\int_0^3 (x^2 + x) dx$ by taking 6 equal intervals and compare the result with the exact value of the integral. (5 Marks)
- (d) Evaluate the integral $\int_0^3 e^{2x} dx$. (2 Marks)
- (e) Find the area enclosed by the curves $y = x^2$ and $y = x^3$. (4 Marks)

Question Two (15 Marks)

- (a) Find the volume of the solid generated by revolving about the y-axis the region bounded by the curve y = 1 + x between the lines y = 2 and y = 4 and about y-axis. (5 Marks)
- (b) Find the length of the curve $x = 5(2t \sin 2t)$, $y = 10 \sin^2 t$ between t = 0 and $t = \pi$. (5 Marks)
- (c) Define the term indefinite integral.

(d) Evaluate $\int \frac{x^2 + x + 1}{2x^3 + 3x^2 + 6x + 5} dx$.

SECTION B (39 MARKS)

Question Three (13 Marks)

1

(1 Mark)

(4 Marks)

(3 Marks)

- (a) Derive the reduction formula $I_n = \int x^n e^x dx = x^n e^n nI_{n-1}$ and use it to evaluate $\int x^3 e^x dx$. (6 Marks)
- (b) Use change of variables $t = \tan \frac{x}{2}$ to show that $\sec x dx = \ln \left(\frac{1+t}{1-t}\right) + c.$ (7 Marks)

Question Four (13 Marks)

- (a) A sphere is generated by revolving the graph of $y^2 = r^2 + x^2$ about x-axis. Verify that the volume of the sphere is $\frac{4}{3}\pi r^3$. (4 Marks)
- (b) Show that $\ln(1+x+x^2) = \int \frac{1}{1-x} dx 3 \int \frac{x^2}{1-x^3} dx + c$ where c is a constant. (4 Marks)
- (c) Integrate $\int e^{5x} \cos 3x dx$ by parts showing all your workings. (5 Marks)

Question Five (13 Marks)

- (a) Approximate the value of $\int_0^2 \frac{1}{x^2+1} dx$ with n = 4 using Simpson's rule and compare with the exact value by finding the percentage error. (7 Marks)
- (b) Find the total distance travelled by a particle between t = 0 and t = 3 if the velocity of the particle is given by the function $v(t) = 3t^2 + 2t + 1$. (3 Marks)
- (c) Determine whether the integral $\int_{-\infty}^{0} \frac{1}{(x^2-1)^2} dx$ converges or diverges. (3 Marks)

Question Six (13 Marks)

- (a) Evaluate using trigonometric substitution the value of $\int \frac{2}{3+4x^2} dx$. (4 Marks)
- (b) Find the area enclosed by the curve with parametric equations $x = a \cos^2 \theta \sin \theta$ and $y = a \cos \theta \sin^2 \theta$ between $\theta = 0$ and $\theta = \frac{\pi}{2}$. (6 Marks)
- (c) Find the average value of $f(x) = 3x^2 + 4x + 1$ between x = -1 and x = 2. (3 Marks)

Question Seven (13 Marks)

- (a) Show that $\int \cos 6x \cos 4x \, dx = \frac{1}{20} \sin 10x + \frac{1}{4} \sin 2x + c.$ (3 Marks)
- (b) Integrate $\int \frac{1}{3 + \cos^2 x} dx$.
 - (c) Find the length of the cardioid $r = 5(1 + \cos \theta)$ from $\theta = 0$ to $\theta = \pi$. (4 Marks)

(6 Marks)