

ALUFE TORINEHESSIN Bustin of Knowledge...

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel; +254 741 217 185 +254 736 044 469 off Busia Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2018 /2019 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

PHY 113

COURSE TITLE:

HEAT AND THERMODYNAMICS

DATE: 14TH DECEMBER, 2018

TIME: 9 A.M- 12 NOON

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 6 PRINTED PAGES

PLEASE TURN OVER

PHY 113: HEAT AND THERMODYNAMICS

STREAM: BED (Scie) DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. AnswerTWO questions in sectionA and any other THREE questions in section B.
 - Where necessary the following constants maybe used:
 - One standard atmosphere pressure= $1.013 \times 10^5 Nm^{-2}$
 - Avogadro's constant, $N_A = 6.023 \times 10^{23}$

 - Universal gas constant, $R=8.314JMOL^{-1}K^{-1}$
 - Specific heat of ice= 2.0×10^3 JKg⁻¹C⁻¹
 - Specific heat of water= 4.2×10^3 JKg⁻¹C⁻¹
 - Specific latent heat of ice, $L_f = 3.35 \times 10^5 \, J Kg^{-1}$
 - Specific latent heat of water vapour, $L_v = 2.26 \times 10^5 J K g^{-1}$

SECTION A

Question One (12 Marks)

- (a) State four equilibrium criteria that must be satisfied for the system to be in thermodynamic equilibrium. (4 Marks)
- (b) Differentiate between an open system and isolated system.

(2 Marks)

c) State the zeroth law of thermodynamics

(1 mark)

- d) Air in the cylinder of a diesel engine is compressed to $\frac{1}{15}$ of its initial volume, V_1 . If the initial temperature is 300 K. Find the final temperature after compression. ($\gamma_{our} = 1.4$) (2 Marks)
- e) The temperature difference between the inside and the outside of an automobile engine is 450°C. Express thistemperature difference in (i) Fahrenheit scale and (ii) Kelvin scale.

(2 Marks)

f) A typical room contains 2500 moles of air. Treating the air like an ideal gas, find C_v in air when the room is at constant pressure of 1 atmosphere. (Take $\gamma = 1.4$). (3 marks)

Question Two (12 Marks)

a) i) Define quasi-static processes

(1 Mark)

- (b) An ideal gas of V=0.2 m³ at temperature of 273.15 K and pressure of 10⁵ Nm⁻² expands reversibly to 4 times its initial volume. Calculate work done at constant pressure. (2 Marks)
- c) Differentiate between reversible and irreversible processes and give examples of such processes. (3 Marks)
- d) Calculate the volume occupied by one mole of an ideal gas at a temperature of 273 K and a pressure of 1.01×10^5 Pa. (2 Marks)
- e) A square hole 8.00 cm along each side is cut in a sheet of copper.
- (i) Calculate the change in the area of this hole if the temperature of the sheet is increased by 50.0 K. (2 Marks)
- (ii) Does this change represent an increase or a decrease in the area enclosed by the hole?

(1 Mark)

f) Distinguish between adiabatic and isothermal processes

(1Marks)

SECTION B

Question Three (12 Marks)

a) State three assumptions made in deriving the average kinetic energy of molecules (3 Marks)

b) Consider a rectangular box of volume V with N molecules, each of mass m and having speed v. . The magnitude of change of momentum when the molecules hit the wall is $\Delta P = \frac{N}{V} m v_x^2 A \Delta t \text{ . Show that the average kinetic energy of molecules is } \frac{3}{2} kT \text{ . (6 Marks)}$

PHY 113

c)

(i) What is the average translational kinetic energy of an ideal-gas molecule at 27°C.

(1 Mark)

(ii) What is the total random translational kinetic energy of the molecules in 1 mole

of this gas
$$(T= 27^{\circ}C)$$
?

(1 Mark)

(iii) What is the root-mean-square speed of oxygen molecules at this temperature

$$(T = 27^{\circ}C)$$
?

(1 Mark)

Question Four (12 Marks)

a)

i) State the first law of thermodynamics

(1 mark)

- ii) An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m³ to 3.00 m³ and 12.5 kJ is transferred to the gas by heat, what arethe change in its internal energy andits final temperature? (3 Marks)
- b) An ideal gas initially at Pi, Vi, and Ti is taken through a cycle as shown in Figure below.

- (i) Find the net work done on the gas per cycle. (1 Mark)
- (ii) What is the net energy added by heat to the system per cycle?

(1 Mark)

- (iii)Obtain a numerical value for the net work done per cycle for 1.00 mol of gas initially at 0°C. (1 Mark)
- b) If the 4g of oxygen gas (initially at STP) is isobarically compressed to half its original volume. Determine:
- i) Work done for the compression

(3 Marks)

ii) temperature change that occurs

(2Marks)

Question Five (12 Marks)

- a) The equation of state of an ideal gas is PV=RT. Show that i) $\beta = 1/T$ and b) k=1/P (6 Marks)
- b) An approximate equation of state of a real gas at moderate pressure, devised to take into account the finite size of molecules is P(V-b)=RT, where b is a constant. Show that:

i)
$$\beta = \frac{\frac{1}{T}}{1 + \frac{Pb}{RT}}$$
 (3 Marks)

$$ii) k = \frac{\frac{1}{P}}{1 + \frac{Pb}{PT}}$$
 (3 marks)

Question Six (12 Marks)

i) Show that the heat capacities of an ideal gas C_p , C_v at constant pressure and volume respectively are related by: $C_p = C_v + R$ where R is the universal gas constant. (6 marks)

PHY 113

i) Define change in entropydS of a system.

(1 Mark)

- *ii)* What are the changes in entropy of a gas that expands: at constant temperature and adiabatically.(2 Marks)
- iii) Calculate the change in entropy of 250 g of water heated slowly from 20.0°C to 80.0°C.

(3 Marks)

Question Seven (12 Marks)

a) State the Kelvin–Planck and Clausius statement of the second law of thermodynamics.

(2 Marks)

b) What is the difference between a refrigerator and a heat pump?

(2 Marks)

c) What are the four processes that make up the Carnot cycle?

(2 Marks)

d) Show that the efficiency of a heat engine operating in a Carnot cycle using an ideal gas is given by $e_c = 1 - \frac{|Q_L|}{|Q_H|} = 1 - \frac{T_L}{T_H}$. (6 Marks)
