

OFFICE OF THE DEPUTY PRINCIPAL

ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2019 /2020 ACADEMIC YEAR

SECOND/THIRD YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE CS/ASC

COURSE CODE:

MAT 216/310

COURSE TITLE:

REAL ANALYSIS I

AL ATY COLLEGE

DATE: 4th DEC 2019

TIME: 9AM-12PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

MAT 216/310: REAL ANALYSIS I

STREAM: BSc (CS&ASC)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- Answer ALL questions from section A and any THREE from section B
- ii. Do not write on the question paper.

SECTION A - ATTEMPT ALL QUESTIONS IN THIS SECTION.

QUESTION ONE (16 MARKS)

- a) Define the term real analysis and state areas in which it is used. (2 Marks)
- b) Prove that $\sqrt{6}$ is not a rational number. (4 Marks)
- c) If a, b and c are real numbers and a + b = a + c then b = c. Prove. (4 Marks)
- d) Show that the sequence $\left\{\frac{1}{n}\right\}$ is convergent to 0. (3 Marks)
- e) Prove the theorem that if a and b are real numbers such that for any other positive real number ε , $a \le b + \varepsilon$, then $a \le b$. (3 Marks)

QUESTION TWO (15 MARKS)

- a) Define the completeness axioms of real numbers. (4 Marks)
- b) State the supremum and infimum of the following sets;
 - i) $S = \{1, 2, 3\}$ (3 Marks)
 - ii) $S = \{x : 2 \le x < 4\}$ (3 Marks)
- c) Suppose S is a non-empty subject of \Re with upper bound and c < 0 prove that $\sup(c.s) = c.\sup S$ (5 marks)

SECTION B: ATTEMPT ANY THREE QUESTIONS (39 MARKS)

QUESTION THREE (13 MARKS)

- a) Let (X, d) be a metric space and let K > 0 then (x, d_x) is a metric space where $d_k(x, y) = Kd(x, y)$. State the conditions that make it a metric space. (5 Marks)
- b) Evaluate $\lim_{n \to \infty} \frac{2n^3 3n}{5n^3 4n^2 2}$ (5 Marks)
- c) Give three examples of monotone sequence and state whether it is strictly increasing, decreasing or alternating sequences. (3 Marks)

MAT 216/310

QUESTION FOUR (13 MARKS)

- a) Prove that $\lim_{n\to\infty} \left(\frac{n^2 1}{n^2 + 1} \right) = 1$ (6 Marks)
- b) Define the term convergence of a sequence. (2 Marks)
- c) Prove that any Cauchy sequence is bounded. (5 Marks)

QUESTION FIVE (13 MARKS)

- a) Show that $x^{16} + x^7 1 = 0$ has a solution $\alpha \in (0,1)$. (5 Marks)
- b) Show that $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n}} \right) = 0$. (5 Marks)
- c) Define a Cauchy sequence . (3 Marks)

QUESTION SIX (13 MARKS)

- a) State the upper and lower bound of sets:
 - i) $S = \{x : 1 \le x < 3\}$ (2 Marks)
 - ii) $Y = \{x : x < 0\}$ (2 Marks)
- b) Prove that the set S of real numbers is bounded if and only if there exist a real number K such that $|x| \le K$, for all $x \in S$. (4 Marks)
- c) Let $\{X_n\}$ be defined by $X_n = \frac{1}{2} \left(X_{n-1} + \frac{2}{X_{n-1}} \right)$, n = 2,3,4... such that $X_1 = 2$. Write down the sequence whose n^{th} term is X_n . (5 Marks)

QUESTION SEVEN (13 MARKS)

- a) Show that $\sqrt{2}$ is an irrational number using the contradiction method. (5 Marks)
- b) Let $X=\Re$ and d be defined as $d(x,y)=\left|x-y\right|$, show that (\Re,d) is a metric space.

(6 Marks)

c) Define a sequence. (2 Marks)