

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF **EDUCATION SCIENCE**

COURSE CODE: COURSE TITLE: **CHE 210**

ATOMIC STRUCTURE AND BONDING

DATE: 6TH DECEMBER, 2019 TIME: 9.00AM – 12.00 NOON

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

CHE 210: ATOMIC STRUCTURE AND BONDING

STREAM: BED (Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

i. Answer ALL questions.

ii. Diagrams may be used whenever they serve to illustrate the answer

Question One

a) Define the following terms.

	i.	Wave	(1 Mark)
	ii.	Wave function	(1 Mark)
	iii.	Stationary state	(1 Mark)
b)	Der	rive the de Broglie's relationship.	(3.5 Marks)
c)	Dis	cuss the state of an atom according to Bohr model.	(3 Marks)
d)	Dis	cuss briefly the uncertainty principle.	(2 Marks)
e)	Dis	cuss the two consequences of the Heisenberg Uncertainty Principle.	(4 Marks)
f)	Out	line the three properties of a wave function.	(4.5 Marks)

Question Two

a)	The main task of applying the Schrodinger equation to a given problem is		
	two-fold. Discuss.	(4 Marks)	
b)	Highlight five conditions necessary for the Schrodinger equation.	(5 Marks)	
c)	Discuss briefly the shapes of s, p and d orbitals	(4 Marks)	
d)	The filling of orbitals with electrons is governed by three		
	principles. Discuss.	(3 Marks)	
e)	The electron configuration of a carbon atom is $1s^22s^22p^2$. Illustrate the		
	three possible arrangements for the electrons in p orbital.	(2 Marks)	

Question Three

a) Calculate the effective nuclear charge on a 3d electron in a nickel atom.	(2 Marks)
b) Briefly discuss the three factors considered when describing Fajan's rule.	(3 Marks)
c) Outline the three statements that summarize valence bond theory.	(3 Marks)

1

CHE 210

d) Discuss the formation of F-F bond using valence bond theory.		
e) i. Define the term hybridization.		
ii. State what happens when orbitals are hybridized.	(2 Marks)	
f) State two failures and one success of valence bond theory	(3 Marks)	
Question Four		
a) Define lattice enthalpy.	(1 Mark)	
b) i. Draw a Born-Haber cycle for sodium chloride, naming each step.		
ii. Calculate the lattice enthalpy for sodium chloride given that;		
ΔH_{f}^{θ} (NaCl) = -411 kJmol ⁻¹		
$\Delta H_{at^{\theta}} (Na(g)) = +107 \text{ kJmol}^{-1}$		
$\Delta H_{at^{\theta}} \left(\frac{1}{2}Cl_2(g)\right) = +121 \text{ kJmol}^{-1}$		
$\Delta H_{i1}^{\theta} (Na(g)) = +496 \text{ kJmol}^{-1}$		
$\Delta H_{eal}^{\theta} (Cl(g)) = -348 \text{ kJmol}^{-1}$	(3 Marks)	
c) State two characteristics of ionic compounds.	(2 Marks)	
d) For combination of the atomic orbitals to occur three conditions have to be met.		
Outline them.	(2 Marks)	
e) Construct a molecular orbital picture for fluorine molecule and determine		
whether it is paramagnetic or diamagnetic.	(4 Marks)	

2